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Preface

The following notes have been prepared for the ICTP-SAIFR school on ’Interaction
of Light with Cold Atoms’ held 2023 in Sdo Paulo. They are conceived to support an
introductory course on ’Atom-Light Interaction and Basic Applications’. The course
is divided into 5 lectures and a bonus.

Cold atomic clouds represent an ideal platform for studies of basic phenomena of
light-matter interaction. The invention of powerful cooling and trapping techniques
for atoms led to an unprecedented experimental control over all relevant degrees of
freedom to a point where the interaction is dominated by weak quantum effects. This
course reviews the foundations of this area of physics, emphasizing the role of light
forces on the atomic motion. Collective and self-organization phenomena arising from
a cooperative reaction of many atoms to incident light will be discussed.

The course is meant for graduate students and requires basic knowledge of quan-
tum mechanics and electromagnetism at the undergraduate level. The lectures will
be complemented by exercises proposed at the end of each lecture. The present notes
are mostly extracted from some textbooks (see below) and more in-depth scripts which
can be consulted for further reading on the website http://www.ifsc.usp.br/~strontium/
under the menu item "Teaching’” — ’Cursos 2023-1" — 'ICTP-SAIFR pre-doctoral
school’. The following literature is recommended for preparation and further reading:

Ph.W. Courteille, script on FElectrodynamics: Electricity, magnetism, and radiation
(2018)

Ph.W. Courteille, script on Quantum mechanics applied to atomic and molecular
physics (2019)

H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping, (Graduate Texts in
Contemporary Physics, Springer, 1999)

J. Weiner and P-T. Ho, Light-Matter Interaction: Fundamentals and Applications
(Springer-Verlag, Berlin, 2003)

Ch.J. Foot, Atomic physics, (Oxford Master Series in Atomic, Optical and Laser
Physics, 2005)

R. Loudon, The quantum theory of light (Oxford Science Publications, Oxford, 1973)

Ch.C. Gerry and P.L. Knight, Introductory Quantum Optics (Cambridge University
Press, 2005)

P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag,
Berlin, 1990)

LI. Sobelman, Atomic Spectra and Radiative Transitions (Springer Verlag, Berlin,
1977)

M. Weissbluth, Photon-Atom Interactions (Academic Press, Boston, 1989)

C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics, vol. 1, (Wiley Inter-
science, 1977)
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https://www.ifsc.usp.br/~strontium/Publication/Scripts/ElectroDynamicsScript.pdf
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Chapter 1

Two-level atom 1n a radiation

field

Our perception of the macroscopic world is dominated by light and matter. Since
ancient Greek philosophy our conceptions of light and matter follow a capricious
evolution, culminating with the discovery of the atom and the formulation of the
theories of electrodynamics and quantum mechanics. Combining those two theories
and accepting that both, light and matter exhibit particle-like and wave-like features,
we believe to have nowadays at hand a reasonably sound picture. This confidence
is alimented by the predictive power of modern physics. Nevertheless, there remain
many open questions, in particular, when it comes to cooperative effects in light
scattering from ensembles of atoms: On one hand, Maxwell’s equations tell us how
light interacts with macroscopic bodies via reflection, refraction, emission of radiation,
and even exerting radiative forces. On the other hand, atomic physics tells us to break
down matter into indivisible atoms, with Niels Bohr teaching us, how light interacts
with those atoms. Now, the transition from the microscopic quantum world to the
classical macroscopic world is particularly tricky, and much can be learned extending
the quantum concepts to collective effects gradually increasing the number of atoms
and their density. Some of this will be done during this school. In this series of
lectures, we will mostly concentrate on the interaction of light with individual atoms
and only in the last lecture discuss an example of a collective effect in a dilute gas.

We start the first lecture in Sec. 1.1 with a brief historical survey and a definition
of the area of research in physics covered by this lecture, which is the interaction of
light with cold atoms. As already mentioned the correct framework of this area is
provided by the theories of electrodynamics and quantum mechanics. We will review
in Sec. 1.2 quantum mechanical time-dependent perturbation theory, which we apply
to the Rabi problem of two levels interacting with a coherent radiation field. We will
briefly introduce the notions of the dressed states and of quantum jumps.

1.1 Introduction

1.1.1 Atoms and photons

The fundamental idea of quantum mechanics is the assumption that there are entities
which can not be subdivided beyond a certain limit. Examples are the mass of a body,
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the speed of an electron orbiting an atom, or the intensity of a beam of light. This
idea was first uttered by Leucippus 500 years a.c. and his student Democritus, who
imagined matter being made of smallest particles which they called atoms. These
atoms move freely, collide, combine, and separate: "There is nothing else than atoms
and free space’ they claimed. The microscopic atoms would have the same charac-
teristics as the macroscopic objects they form when they combine, for example, color
and shape. The idea of the atom resurfaced and was refined in the course of the
18" century (see Tab. 1.1 below). Today, we know that the basic idea was good, but
reality is a little more complicated.

Table 1.1: Historical time line of the quantization of matter.

500 a.c. | Democritus invention of the atom

1800 Avogadro, Dalton reinvention of the atom

1897 Thomson charge transport, raisin-in-a-cake model
1909 Rutherford, Geiger, Marsden | a-scattering, charge localized in nuclei
1911 Rutherford planetary model

1900 Bohr quantized orbitals

1923 de Broglie matter has characteristics of waves
1927 Davisson, Germer, Stern electron and atoms diffraction

Still, at the end of the 19" century, the physical world seemed rather simple:
matter and light was all that existed. Matter was made up of atoms and light was a
wave. Therefore, to describe a real system, it was enough to calculate the trajectories
of its elementary particles and the propagation of light between them. The way that
light interacts with polarizable and magnetizable matter via electric and magnetic
fields had been perfectly explained by laws discovered by Coulomb, Ampere, Faraday,
and Maxwell.

However, new experimental observations, such as the ultraviolet divergence of
black-body radiation, that appeared in the late 19" century, were incompatible with
these traditional concepts. New ideas were pioneered by Max Planck who, in 1905,
with a little help from Einstein quantized the electromagnetic field, and therefore the
light, into small harmonic oscillators. This was the starting point for the development
of a new theory called ’quantum mechanics’. Soon, this theory was applied to explain
the photoelectric effect. The second important step was initialized by Niels Bohr,
who quantized the hydrogen atom in 1913 into discrete excitation levels.

Table 1.2: Historical time line of the quantization of light.

1801 Young light is diffracted like a wave

1860 Maxwell | unified theory of electrodynamics including light

1888 Hertz detection of radio waves

~ 1890 accurate measurements of black-body radiation spectra
1900 Planck quantum hypothesis: £ = hv

1905 Einstein | photoelectric effect, light behaves like a particle
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Nowadays we know that our universe is not as simple as classical mechanics sug-
gested, and that atoms are also waves and light also behaves like particles. This
duality principle is one of the fundamental ideas of quantum mechanics. The appear-
ance of an object as a wave or as a particle depends on the situation in which it is
observed. While the wave nature of light was well established in classical physics since
a long time, Louis de Broglie was the first in 1924 to apply the duality principle also to
massive particles and to predict that particles, under certain conditions, behave like
waves the wavelengths of which increase as their velocity decreases. Each particle (or
body) is delocalized along a distance corresponding to this ’de Broglie wavelength’.
This feature of matter was soon discovered experimentally in electron beams and is
still used today in commercial devices, for example in electron microscopes.

1.1.2 Definition of the research area

Having decomposed our world into its elementary components, light and atoms, we
may now recompose it by identifying the relevant degrees of freedom and gradually
increasing the complexity of the systems we want to study.

In quantum mechanics we associate an energy to every degree of freedom and to
its interaction with other degrees of freedom. Looking for example at a single atom
we notice, that it has a mass and therefore mechanical degrees of freedom which may
carry kinetic and potential energy,

. P2

H., = 57 +V(R). (1.1)
On the other hand, we learn in atomic physics, that atoms also have an internal
structure, which is due to the motion of negatively charged electrons orbiting around
a positively charged nucleus. The details of the internal structure, which is organized
into discrete energy levels, are very complicated, and its derivation will not be the
topic of this course. Instead we assume the structure of energy levels hw; as given,
we write it down as,

f{ele = Zhw2|z><l| ) (12)

and illustrate it in so-called Grotrian diagrams, which exhibit the energy structure in
a compact way. An example is shown in Fig. 1.1. Every energy level corresponds to a
particular configuration of the electrons and their spins within the electronic shell of
the atom, and it is the ’compatibility’ of two such configurations which determines,
via so-called selection rules, whether a transition between them is easy or unlikely to
occur.

Since Planck’s treatment of blackbody radiation, we know that any radiation field
is composed of quanta called photons. Since, in a radiation mode (denoted by its
wavevector k) all photons have equal energy fiwy, we may treat it like a harmonic
oscillator and write the Hamiltonian of a radiation field in terms of photon creation
and annihilation operators,

I:Irad = Zhwk ((Alf(dk + %) . (13)
k



4 CHAPTER 1. TWO-LEVEL ATOM IN A RADIATION FIELD

(5s7p) 1P+

(556d) 3D1 23
(4dsd) 'D,

257 nm
(240 kHz)

(5s6p) 3Py 1.2

(5p%) 3Py 1.

... (5s68) 38
(5p?)§S1

4723 nm (5.7 MHz)
478.4 nm (4.8 MHz)
787.1 nm (14 MFZ)

magical wavelength 813 nm

(5s%) 's

Figure 1.1: Grotrian diagram of strontium.

It is important to be aware that radiation fields do not only carry energy (via their
intensity), but they also carry momentum (via their Poynting vector).

Fundamental laws of physics tell us, that the energy associated with every degree
of freedom (atomic or radiative) is conserved, and this also holds for linear and angular
momentum. Degrees of freedom may interact, where we understand any interaction in
terms of collisions which must conserve energy, momentum, and angular momentum,
as well. In quantum mechanics we describe a collision by a concatenation of creation,
annihilation or transition operators acting on different degrees of freedom. For exam-
ple, if &L means the creation of a photon in mode k and 6= = |1)(2] the transition of
an atom from an excited state |2) to a ground state |1), then the operator,

Hipnp dié_elk'ﬁ (1.4)

describes the process of a photon emission in compliance with Bohr’s model. Here,
the term e’®® = |P + hk)(P| describes the transition of the motional state of the
atomic center-of-mass to a momentum state accelerated by the photonic recoil Ak.
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The operator (1.4) represents the most fundamental process in light-matter inter-
action, which involves three degrees of freedom: the atomic center-of-mass motion,
a photon, and the internal atomic excitation. Not all three degrees of freedom are
always relevant for the understanding of a phenomenon, as we will study in many
examples during this lectures. On the other hand, there are possibly other degrees of
freedom, which may couple to the process described by (1.4). In this lecture we will
mostly disregard interaction with other atoms (van der Waals, collisions) and quan-
tum statistical effects. Furthermore, we will mostly treat light as a classical field,
which is justified whenever the light modes are macroscopically populated.

(c)

Figure 1.2: (a) Artist’s view of multiple scattering of a photon through a dilute cloud. (b)
Atomic cloud as a bulk object characterized by a refraction index n(r). (c) Hlustration of a
photonic band in an optical lattice.

1.1.2.1 Why studying ultracold atomic gases?

Cold atoms have a lot of advantages (and no major inconvenience). Cold atomic
clouds are in the same time macro- and microscopic: On one hand, a cloud of one
billion atoms represents a macroscopic object so large, that it can be characterized by
a refraction index and its fluorescence can be seen by eye. On the other hand, with
a typical density 10 orders of magnitude lower than the air we breathe, it is so dilute
that the distance between atoms is much larger than a wavelength of visible light.
We can thus picture the propagation of light inside a cloud as photons bouncing off
individual atoms by microscopic scattering, as illustrated in Fig. 1.2. Hence, atomic
clouds allow us to study macro- and microscopic aspects of scattering in the same time.

Second, we dispose today of incredibly pow-
erful techniques for controlling and measuring
atoms. Clouds can be isolated from all kinds of
noise sources. We control energy and particle ex-
change with the environment over the time scale
of experiments. We can manipulate all essential
control parameters, such as size, temperature, and
even the interatomic interaction strength. We can
measure thermodynamic quantities such as the in-
ternal energy, chemical potential or heat capacity.
All relevant degrees of freedom can be controlled
up to a level, where the quantum nature of the de-
grees of freedom dominates the dynamics, for ex-

Figure 1.3: Most quantum optics
experiments are table top experi-
ment.
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ample in cavity QED experiments of single atoms trapped by single photons. More-
over, we can today simulate other fields of physics, such solid state physics, with
atoms trapped and periodically ordered in optical lattices and detect effects that had
been predicted but never observed in solids. An interesting particularity is that most
experiments are performed on trapped, i.e. inhomogeneous samples.

An important practical advantage is the fact, that atom optical experiments are
table top experiments. FEven though the creation of a cold atomic cloud or Bose-
FEinstein condensate is still difficult, it can, in principle, be done by a single medium-
sized PhD student.

The general importance of the field of atom optics has been acknowledged with
23 Nobel prices in the last 25 years awarded to Dehmelt, Paul, Ramsey, Cohen-
Tannoudji, Chu, Phillips, Cornell, Wieman, Ketterle, Hansch, Glauber, Hall, Wineland,
Haroche, Ahskin, plus several Nobel prices granted to closely related areas of physics
(De Gennes, Leggett, Thouless, Haldane, Kosterlitz, Claussen, Aspect, Zeilinger).

1.1.2.2 The atom optical toolbox

Let us now give a brief overview on the atom optical toolbox: Typically, we work with
between 1 and 10! atoms (or sometimes ions). External trapping potentials compress
the clouds to low or high densities of n = 10°...10'* cm™, which however are still ten
orders of magnitude below atmospheric pressure. This means that all experiments
must be conducted in extreme ultrahigh vacuum (XUHV) chambers. The greatest
breakthrough in atomic optics, in the eighties and nineties, was the invention of optical
cooling techniques, which could bring atomic clouds to 1 uK cold and even picoKelvin
ultracold temperatures.

Another important breakthrough was the
observation of so-called Feshbach resonances,
which allow to vary the self-interaction of the trap
clouds over extremely wide ranges and even
in real-time, with collision cross sections rang-
ing from 0 to at least Teoyision ~ 1077 cm?.
Consequently, we have separate influence over
all contributions to the total energy: over the
potential energy by compressing, deforming or
shaking the trap, over the kinetic energy by
cooling or exciting collective vibrations, and fi- Figure 1.4: Cold trapped atoms.
nally over the self-energy via the Feshbach res-
onances [33, 86],

_interactions

/~ atom

trapping cooling Feshbach resonances

' ! ! (1.5)
E = pot + Ekin + Eself

1.2 Two-level systems in quantum mechanics

In this section we will start to develop the quantum mechanical framework for treating
the interaction of a single atomic two-level system with an oscillatory perturbation
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coupling the two levels. Such temporal perturbations typically occur when we sud-
denly switch on an external field that influences the motion or spin of the particles,
or when the field varies over time, for example, an electromagnetic field.

1.2.1 Time-dependent perturbations

The time-dependent Schrédinger equation is,

Hip(r,t) = mw , (1.6)

with 9 (r,t) = (r|1(t)). We write the perturbation as !,
H=H%+ A ). (1.7)
and the eigenenergies and -functions of the unperturbed system as,
HOnY = Euln) | (18)

where |n) are the possible states (energy levels) in which the system can be. Recall-
ing that this stationary Schrodinger equation was obtained from the time-dependent
Schrodinger equation via a separation ansatz, the temporal evolution of these eigen-
functions is given by,

B0 (0) = Inje B (1.9

Since the eigenfunctions form a complete set, we may expand any solution of the
Schrodinger equation as,

[ () =D anO (1) = an(t)ln)e™ " (1.10)

Insertion into the Schrédinger equation and multiplying from the right with (j|, we
get in first order,
day;(t)

1h 7

= 3 au (O GIED et (1.11)

where hw;, = E; — E,. Equation (1.11) is exactly equivalent to the Schrédinger
equation (1.6): no approximations have been made. However, for the case of a real
multilevel atom in a radiation field it is unsolvable, and so approximations are re-
quired. In perturbation theory one considers the atom to be initially in its ground
state |1), that is, a,,(0) = d,1. The approximation now consists in assuming

a,(t) <1 (1.12)

for all n # 1 and doing a formal time integration of Eq. (1.11) to calculate these
an(t) values. The small components a,(t) of the excited states |¢£LO)> for n # 1 that
are mixed into |)(1)()) become the transition amplitudes and their squares are the
transition rates. For transitions to the continuum, such as photoionization, averaging
over the density of final states results in the familiar Fermi’s golden rule of quantum

1See script on Quantum mechanics (2023), Sec. 5.4.1.
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mechanics. For transitions between discrete states driven by radiation whose spectral
width is larger than the natural width of the transition, averaging over the spectral
density gives the same golden rule.

This approach is not suitable for narrow-band laser excitation of atoms, however,
because large excited-state populations are possible, thereby violating Eq. (1.12). In-
stead, a different approximation is made, which consists in truncating the summation
of the exact Eq. (1.11) to just two terms, a ground and an excited state connected by
the laser frequency, and solving the resulting coupled differential equations directly.
Such a calculation for a two-level system was first studied by Rabi [122] in connection
with magnetic resonance, and is described in many textbooks [25, 123].

The expansion now reads,

[ () = ar (O (1)) + az ()5 (1)) - (1.13)

Note that not only do eigenfunctions oscillate, but the coefficients also depend on time,
because the composition of the states can change. The instantaneous probability of
finding the system in state |n) is |a,(t)|?. Importing the above linear combination
into the Schrodinger equation,

[HO + HD ()] |y (1)) = Zﬁ |¢ (1), (1.14)
we find,

ar HOWOY + as HO17) + oy HO ) 4 ag HO )

da aa alyp'® apsY
o 1|¢10)> 2 o Izglt >+0L2 % )

o) + (1.15)

= ay HOW) 4+ ap HO {0y = zha1|¢§°)> + ahido| ) |

because the other terms satisfy the Schrodinger equation of zero order. Replacing the
stationary eigenfunctions,

ale_ZElt/hﬁ(l)H) + aze_lEQt/hfI(l)B) = zhdle_lElt/h|1> + Zhdge_lEQt/hD} , (1.16)

and multiplying this equation with (1|x and (2|x, we find with the abbreviation
hwo = E5 — En,

hay = ay (1 HM 1) + age™ 0t (1| AD)|2) | (1.17)
whiy = ay et (2lHM (1) + ap (2]HM|2) .

Frequently, the perturbation induces only a coupling, but does not directly influence
the energies, (n|H™®|n) =0,

efzwot

1h

ezwgt

1h

(1HD2)  and  ap =ay @HEM1)]. (1.18)

a1 = as

Without perturbation, (m|H®|n) = 0, no dynamics develops; the eigenfunctions
evolve independently.
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Let us now consider a periodic perturbation oscillating at frequency w = wg + A,
where A is called the detuning from the resonance wy,

HM = —e€(r,t) - v = —e&yécos(kz — wt) -1 . (1.19)
Then,
2HWD|1) = —e& cos(kz — wt)(2|r|1) = hQ cos(kz — wt) , (1.20)
where we call £ a0l
0= % (1.21)

the Rabi frequency. This yields,

—wwot wot

a1 = —1Qdage cos(kz —wt) and a4y = —10Q%a1"% cos(kz —wt) . (1.22)

Neglecting fast-rotating terms doing the so-called rotating wave approzimation (RWA)
and choosing the position of the atom to be z = 0,

ap ~ —%age’

At and Gy o~ —%ale*mt . (1.23)

With the equations of motion we can, starting from initial values for a1 (0) and a2(0),
calculate the temporal evolution.

We solve this system of differential equations by differentiating one and substitut-
ing the other,

. . * o Q|2 .
as = —7,0,1% e At _ alA%e At = —%ag — ZA(IQ . (124)

We find solutions via the ansatz ay = e~*At/2(Ae'/? + Be=*¢t/2). The equation for
as yields,

(G — A2 A" G D2 4 (_1G — LA)?Bet(mC-A/2 (1.25)

_ _%(Aez(G—A)t/Q 4 Bet(=G-2)t/2
— 1A [(2G — 1A)Ae(CR2 4 (1G — LA)Be (mG-A/2
Separating the parts in A and in B we obtain two equations with the same result,
G? = Q> + A% (1.26)

G is called the generalized Rabi frequency. Using the initial conditions, aq (0 1 and

az(0) = 0, we can fix one of the coefficients A and B, since a»2(0) = A+ B :_0,
ag = 21Ae A2 5in St (1.27)

We now import this solution into the differential equation for a4,
a1 = —13ase'® = QA2 sin St . (1.28)

The integral is,

t
’ 2A
ai(t) = / QA2 5in St'dt' = 7§61At/2 (Geos §t —1Asin $t) . (1.29)
0
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Using the normalization condition,

2 2
1=a1|* + |ao)* = ‘—é—‘erAt/Q (G cos Gt —1Asin gt)‘ + ‘QZAe_lAt/z sin Gt
442 5 o 220G 2.:2G 2 G°
= W (G COS §t+A S1n Et) +4A S 515:4/1 W . (130)

Hence, A = |Q|/2G, or 2AG/Q* = /Q/Q*. In general, we can choose 2 real, and
the final solution is,

ay (t) = —e'At/? (cos $t + _éA sin §¢) and  as(t) = %e"At/Q sin $¢|. (1.31)

When the detuning A is zero, under the influence of the perturbation, the popula-
tions of the system oscillate with the Rabi frequency Q2. When the light frequency is
detuned from resonance, however, the oscillation frequency G is higher, but the am-
plitude decreases as well. The initially empty state never reaches unitary population.
In Exc. 1.3.0.1 we calculate the time required to allow the perturbation to invert the
population of a two-level system, in Exc. 1.3.0.2 we study the maximum achievable
inversion as a function of detuning, and in Exc. 1.3.0.3 we analyze the dynamics of a
system subject to sequences of pulses.

1

I

0

|ax (1)

0 1 2 3 4
at (m)

Figure 1.5: (code for download) Probability |az(t)|* for the atom to be in the excited state
for @ =T and A =0 (blue), A =T (green), and A = 2.5 (red). Time is in units of 1/T".

1.2.2 Light-shift in the semi-classical picture

From Egs. (1.23) written in matrix form as,

10 0 %Qemt aq 14 (a1
= =+H 1.32
(zd2> <;Q*emt 0 as h as /)’ (1.32)

Algy, we arrive at an equivalent system of equa-

101 0 %Q ay 177 (01
. = :7H 1-
(@) (;Q* “a\a,) TG, ) (1.33)

via a simple transformation as = €*
tions,


https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiOscillations.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/QuantumMechanics/QM_Approximation_RabiOscillations.m
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which has the advantage of a time-independent Hamiltonian, the time dependence
having been transformed into the wavefunctions 2. From the total Hamiltonian in
Eq. (1.33), we find for the eigen-energies,

Eip=02A22G. (1.34)

Because the light intensity is proportional to €2, the energy correction AFE;, =

Eio— % is appropriately called the light shift. In the limit of large detunings,
1 < |A| we may expand,

Ei5~ j:hQ2 1.35

122 E (1.35)

The eigenstates corresponding to AE; o are called the dressed states of the atom and
are calculated in Sec. 2.5.3. Very often the light field is not homogeneous (e.g., in a
standing light wave) producing a spatially dependent light shift AF; 5(r). The force
that results from this gradient of energy is called the dipole force and is discussed in
more detail in Sec. 3.3.1. In Exc. 1.3.0.4 we generalize the calculation of the light-shift
to the presence of spontaneous decay.

1.2.3 Numerical simulations and quantum jumps

The softwares 'Maple’ or 'Mathematics’ are useful for analytical calculations, that
is, multiplying matrices or determining eigenvalues. For numerical calculations the
softwares 'Matlab’, "Python’, or 'Julia’ are more adapted. For example, the time
evolution of a Schrodinger equation,

() = e M |y(0)) (1.36)

can be simulated in a single command line using the Matlab ’expm’ function.
When the system varies in time, H (t), we may divide time into small units d¢t and
propagate the wavefunction as,

(t+ b)) = e FOUp(e)) = (o)) (1 - oLat) (1.37)

continuously reinserting the solution into the equation. This Newton method does not
converge quickly (dt should be chosen small enough when H (t) varies rapidly), but
there are other more sophisticated procedures like the Runge-Kutta method.

A variation of this method is called steepest descent method. This method is
similar to the Newton mewthod (1.37), but replaces the time dt with an imaginary
time. Thus, the coherent temporal evolution of the Schrédinger equation is replaced
by a dissipative evolution. The loss of energy automatically takes the system to
the ground state. The method also applies to more complicated equations than the
Schrédinger equation, for example, the Gross-Pitaevskii equation.

Another numerical method often used in quantum mechanics is called quantum
Monte Carlo simulation of the wavefunction [111]. This method simulates trajectories

2The general transformation rule for time-dependent Hamiltonians is H' = UTHU + iUTU [see
Quantum mechanics (2019), Sec. 14.1.2]. In the present case the Hamiltonians follow from each

1
other with U = (0 ezOAt)’
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of quantum systems treating intrinsic quantum noise as random processes disrupting
the uniformity of the trajectory. The advantage of this method is that it also applies
to dissipative systems. We will introduce this method in the next section.

1.2.3.1 Quantum jumps

The preceding discussions ignored the existence of spontaneous decay of the excited
states resulting from their interaction with the zero-point energy of the electromag-
netic field. Spontaneous emission has played an important role in atomic physics since
the conception of discrete atomic states by Bohr in 1913.

The problem of radiative transitions between discrete states in atoms was discussed
by Einstein in 1917 [52], where he considered three radiative processes. In the first
process, an amount of optical energy fiw (a ’photon’) is absorbed from an applied
radiation field of angular frequency w, and atoms make transitions from the ground
to the excited state. The newly introduced second process is stimulated emission,
where a photon is emitted into the applied radiation field and the atoms make a
transition from the excited to the ground state. Note that in both of these processes
the total energy of the system consisting of the applied radiation field and the atoms
is conserved. The third process is spontaneous emission, where a photon is also
emitted and the atoms also make transitions from the excited to the ground state.
However, unlike stimulated emission, the photon is not emitted in the mode of the
radiation field, but has a random direction or polarization (see Fig. 1.6). Since the
photon is emitted into the vacuum field, there is no longer conservation of energy
for the system of radiation field plus atoms, since the vacuum field is outside the
system. Finally, from the distribution of black-body radiation, Einstein deduced that
the fourth process, spontaneous absorption, is not possible (or at least very unlikely).

The discussion in this lecture so far has
properly accounted for the two stimulated pro- 1"> le) atom
cesses discussed above [see Eqs. (1.31)]. The
combined action of these two processes causes q &)
the oscillation in both the excited and ground I
state probabilities (see Fig. 1.5). For atoms
initially in the ground state, the probability for

()

absorption is large and the probability for them f
to go into the excited state increases. Once § R
the atoms have a large probability to be in the light mode  ©

excited state, however, the probability for ab-

sorption decreases and the probability for stim- Figure 1.6: Two-level atom interacting
ulated emission increases. This leads to the With a cavity mode.

Rabi oscillations exhibited in Fig.1.5.

To include spontaneous emission, one way could be to include the vacuum field
in the description of the system, which would then be closed as before. However,
the task of doing so is formidable because both the spontaneous emission direction
and the polarization direction are random. Thus it would be necessary to include the
entire continuum of these parameters in the system, which is beyond the scope of this
book. Furthermore, in most cases the properties of the emitted photon are not of
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interest, and information on the atom and the applied radiation field suffices.

The usual way to treat this problem in quantum mechanics is to introduce the
density matrix p and to discuss the excitation of the atoms in terms of populations
and coherences instead of amplitudes. This follows in the next lecture. Here, an
alternative view of this problem is presented.

This view is called the Monte Carlo wavefunction method and was recently de-
scribed anew [111]. It is a numerical simulation that treats the evolution of the system
with the same coupled equations (1.18). However, at each instant there is some prob-
ability that an atom will undergo spontaneous emission within a certain, small time
interval. This probability is proportional to the probability |az|? for the atom of being
in the excited state. In this ’‘Gedankenexperiment’ the state of the system is observed
by detecting the emitted photons with a photon counter. At each instant, the output
of a random number generator is compared with the probability for a spontaneous
emission, and if the random number is smaller, it is assumed that spontaneous emis-
sion has occurred (this is why this method is named after a city most famous for
gambling). At that instant the evolution starts again from the values a; = 1 and
as = 0. Since there is no interest in the emitted photon, it is disregarded.

1 1

0.5 \

e

P11
P11

0
0 100 200 0 100 200
t (ns) t (ns)

Figure 1.7: (code for download) (a) Quantum Monte Carlo wavefunction simulation. It is
important to be aware, that a trajectory generated by a MCWF simulation only represents
one of many possible trajectories of the system. (b) The evolution of the density matrix
p(t) = |¥())((t)| (blue curve) is nothing else than the average (black curve) over all possible
MCWEF trajectories for the system.

Numerical results from this method, obtained in Exc. 1.3.0.5, are shown in Fig. 1.7.
Note that the time when a spontaneous emission occurs is intrinsically unpredictable
(otherwise the emission wouldn’t be spontaneous). This randomness translates in
trajectories of the wavefunction which, when we repeat the simulation procedure
many times with the same starting condition, are all different. That is, a particular
simulation results in a particular trajectory for a certain atom, but infinitely many
different trajectories are possible. The green line in Fig. 1.7(a) shows one possible
trajectory for one atom. The oscillatory behavior is evident, as suggested in Fig. 1.5;
however, the oscillations are interrupted by spontaneous emission events projecting
the atom into its ground state. Repeating the procedure with N = 100 atoms [see
Fig. 1.7(b)] still results in oscillatory behavior for small time periods; however, these
oscillations damp out for longer times. Also the discrete jumps, clearly visible for


https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Measurement_TwolevelMonteCarlo.m
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N = 1, can are longer discernible. This results from the averaging process, since
the emission times are random and thus different for different atoms. This causes
the oscillations to be damped and the excitation probability reaches its steady-state
value. In Exc. 1.3.0.6 we present an analytical calculation of the time evolution of a
resonantly driven two-level system subject to spontaneous decay.

I T"f‘ﬁ: ‘uﬂ,m)
(I

(b)

-
o
o
o

r"\\‘ ﬂ'i,w‘ (*’%f?@f’zﬂr‘”' e \y .‘WH‘,‘) il \

30 60
time (s)

o

fluorescence (cnts/0.1s)

o

lg) = Sin

Figure 1.8: (a) Quantum measurement at the example of a three-level atom incorporating a
weak (sample) transition and a strong (meter) transition. (b) Random Telegraph signal in
the resonance fluorescence due to quantum jumps.

One common misconception that may arise from Fig. 1.7 is that the atoms even-
tually cease oscillating between the ground and excited states. In most experiments,
measurement are made on a large number of atoms and indeed the oscillations are
damped. However, Fig. 1.7(a) clearly shows that each individual atom still oscillates,
but that these oscillations are damped out by the averaging process. This topic will
reappear in the density matrix approach that describes the evolution of an ensem-
ble of atoms 3. Let us finally note that quantum jumps, whose existence have been
the subject of longstanding controversies [138], have been observed experimentally in
three-level systems (see Fig. 1.8) [115, 136, 137, 10].

1.3 Exercises

1.3.0.1 Ex: Rabi oscillation

The population of a two-level system be initially in state |1). What should be the
duration of a perturbation to transfer the population to state |2)?

1.3.0.2 Ex: Rabi method

Free atoms be illuminated by light pulses characterized by the Rabi frequency (2,
t

whose pulse area is (i) [Q dt = 7 and (ii) = 27. For which frequency tuning A =
0

w — wo the excited state population is maximum? Draw the spectral profile of the
population in the range —5 < A/Q < 5.

3See script on Quantum mechanics (2023), Sec. 16.1.2.


https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture1_Rabi.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture1_Rabimethod.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/QuantumMechanicsScript.pdf
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1.3.0.3 Ex: Ramsey fringes

a. Consider a two-level atom illuminated by a Z-pulse of nearly resonant light, G' >~ €,

and calculate the ground and excited state amplitudes.

b. How do the amplitudes evolve after the pulse if the detuning A is small but non-

zero?

c. Derive the solution for |as(t)|? of the equations (1.23) for the resonant case (A = 0)
er/2 e—1%/2

assuming the following initial conditions, a;(0) = — 7 and as(0) =1 7

pulses separated by a time interval T

s

d. Discuss the case of two consecutive 5-

1.3.0.4 Ex: Light-shift

Calculate the light-shift in a driven two-level system from the effective Hamiltonian,
- 0 )
Hepp = 2 . 1.
= (o %) 3%
Prepare spectra of the eigenvalues for T'/Q2 = 0, 0.5, and 2.

1.3.0.5 Ex: Monte Carlo wavefunction simulation of quantum jumps

The possible occurrence of spontaneous emission produces a dynamics called quantum
trajectory, which can be described by a non-hermitian effective Hamiltonian,

A 0 Q
H.rp = hAo, + Qo™ + cc. — slo, = ) ,
QO A-3
aiming at including energy dissipation processes.
a. Assuming A = 0 = Q verify that I' is indeed the decay rate of the excited state.
b. How does the norm of an arbitrary state [¢)(t)) evolve in time?

c. Verify that the time evolution |¢/(t+dt)) = e~ *Heirdt|¢)(¢)) followed by a renormal-

ization [¢'(t + dt)) — v/ (t+dt) conserves the norm of the wavefunction.
/(! (t+db) [ (t+d2))

d. What is the probability for a spontaneous decay to occur within a time interval
[0,¢]?

e. Now, dissipative processes can be simulated by playing dices with random numbers
¢. We divide time into small intervals d¢ and propagate the wavefunction from ()
to ¥ (t + dt). Next, we generate a random number ¢, uniformly distributed between 0
and 1, which we compare to probability the probability p. In case, ¢ > 1—(¢b(¢)[1(2)),
we conclude that there was no dissipative process, and we let the system proceed in
peace, only renormalizing the wavefunction to compensate for the losses [109, 37].
Otherwise, if ¢ < 1 — (¢(t)|¢(t)), we conclude that there was a dissipative process,
and the system is projected into the eigenstate 9. This projection is abrupt and
called quantum jump. Now, the evolution restarts from zero, ruled by the effective
Hamiltonian. Implement a numerical simulation via,

Afldylv(+dy) _
|¢(t)>mlw(t+dt)>:< WO ®) bt Wt)'w») :

[bo) i C< 1= (b(B)|(1))

This is the method called quantum Monte Carlo wavefunction simulation.



https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture1_Ramsey.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture1_Lightshift.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture1_Quantumjumps.pdf
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1.3.0.6 Ex: Non-hermitian time evolution

We study the time evolution | (t)) = eilgefft|7,/}(0)> with the effective Hamiltonian

(we set h =1),
. 0 10
He.ff=< % )
Q-3

starting from the initial condition (2] (0)) = 1.
a. Calculate the eigenvalues EL and the unitary transformation matrix U, where

UH.;;U~' = E and
. (E. 0
E= .
(v 2)
b. Now calculate the evolution of [1(¢)) and the norm (¢(t)]1)(t)).

1.4 Further reading

LI. Sobelman, Springer Verlag, Berlin (1972), Introduction to the Theory of Atomic
Spectra [ISBN]

M. Weissbluth, (Academic Press, Boston, 1989), Photon-Atom Interactions [ISBN|
M. Weissbluth, Atoms and Molecules [ISBN]

A. Corney, Clarendon Press, Oxford (1977), Atomic and Laser Spectroscopy [ISBN]
M. Tanifuji, World Scientific (2018), Polarization Phenomena in Physics [ISBN]

J. Dalibard et al., Wave-Function Approach to Dissipative Processes in Quantum
Optics [DOI]

W. Nagourney et al., Shelved Optical Electron Amplifier: Observation of Quantum
Jumps [DOT]

A. Schenzle et al., Macroscopic quantum jump in a single atom [DOI]


https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture1_Nonhermitian.pdf
http://isbnsearch.org/isbn/978-1-483-15972-0
http://isbnsearch.org/isbn/978-0-127-43660-9
http://isbnsearch.org/isbn/978-0-127-44452-9
http://isbnsearch.org/isbn/978-0-199-21145-6
http://isbnsearch.org/isbn/978-981-3230-88-0
http://doi.org/10.1103/PhysRevLett.68.580
http://doi.org/10.1103/PhysRevLett.56.2797
http://doi.org/10.1103/PhysRevA.34.3127

Chapter 2

The Bloch equations

As long as we are only interested in stimulated processes, such as the absorption of
a monochromatic wave, the Schrédinger equation suffices to describe the light-atom
interaction. A problem arises when we want to describe relaxation processes at the
same time as excitation processes. Spontaneous emission (and any other dissipa-
tive process) must therefore be included in the physical description of the temporal
evolution of our light-atom system. In this case, however, our system is no longer
restricted to a single mode of the light field and the two atomic states of excitation.
Spontaneous emission populates a statistical distribution of states of the light field
and leaves the atom in a superposition of many momentum states. This situation
can not be described by a single wavefunction, but only by a distribution of wave-
functions, and we can only expect to calculate the probability of finding the system
within this distribution. The Schrédinger equation, therefore, no longer applies, and
we need to trace the time evolution of a system characterized by a density operator
describing a statistical mixture of quantum states. The equations which describe the
time evolution of the matrix elements of this density operator are the optical Bloch
equations, and we must use them instead of the Schrodinger equation. In order to
appreciate the origin and the physical content of the optical Bloch equations we begin
by reviewing the rudiments of the density matrix theory.

In this second lecture we will introduce the master equation for the description of
the dynamics of driven atomic systems. We start in Sec. 2.1 with the definition of
the density matrix, for which we will derive the two-level Bloch equations in Sec. 2.2.
In Sec. 2.3 we discuss the role of spontaneous emission, in Sec. 2.3.2 line broadening
mechanisms, and finally in Sec. 2.4 we give an outlook on the description of multilevel
atoms driven by several laser fields.

17
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2.1 Density operator

We define the statistical operator or density operator !,

(2.1)

p= Zpkf?k where P, = V) (|
2

where {|¢)} is a complete set of orthonormal states of the system under study. We
consider a statistical distribution of these states with p; being the probability of
finding [¢;) in the set. Obviously, >, pr = 1. That is, the density operator acts on
a member of the set {|ix)} in a way to extract the probability of finding the system
in 1),
plbs) = Zpk|1/}k><¢k|¢j> = pjlvy) - (2.2)
k

If all members of the set are in the same state, for example [¢), the density
operator reduces to,

p = ) (Vx| , (2.3)

and the system is in a pure state with pr = d1,. Each time a quantum state can be
expressed by a single wave function, it is a pure state, but it does not have to be an
eigenstate. Starting from the equation (2.2) we find,

(Yr|plbs) = pjdrs - (2.4)

The diagonal elements of the density matrix are the probabilities of finding the system
in |¢;), and assuming that all |¢);,) are orthonormal, the non-diagonal elements of the
incoherent sum (2.1) are necessarily zero 2, Besides that,

> (wklplw) =1, (2.5)

k

so that p contains all available information about the system, that is, our knowledge
about its state. When the state of the system is unknown, p describes the probability
of finding the system in each state. When the state is fully known, p describes a pure
state, that is, a vector in the Hilbert space, which is unequivocally determined by a
complete set of observables with their respective quantum numbers.

n the presence of degeneracy or a continuous spectrum we can generalize the definition:
p= Zpk-ﬁk + /p,\IE’AdA where P, = Z |[km)(km| and Py = / [Ap) (Apldpe .
k m

Here, m and p are degenerate quantum numbers, m, n are discrete, and A, p are continuous quantum
numbers. The set of quantum numbers is complete, when

Zk m |km><km‘ =i= / |>‘M><>‘H‘|d>\dﬂ .

The degree of degeneracy of a state |k) is Tr P, = >, 1. The probability of finding the system in
the state |k) is (Py) = pn S L

2This is simply because we constructed the density operator to be diagonal in the basis {|4s)}.
It does not mean, that the density operator cannot have non-diagonal elements in another basis.
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The properties of the density operator are,

po=
() =z 0
Trp = 1
2.6
Tr /32 < 1 ( )
detp = 0
p = p? for a pure state

2.1.1 Matrix formalism

The next step is to develop matrix representations of the density operator by expand-
ing the state vectors |[¢;) in a complete orthonormal basis,

W) = enrln) =D [n)(nlyy) (2.7)

using the completeness relation ", |n)(n| =1, and defining,

as the projection of the state vector |¢;) on the basis vector |n). Now, we can write
the density operator matrix representation within the basis {|n)} using the definition
of p in Eq. (2.1) and replacing the expansions of |1} and (¢r| of Eq. (2.7):

p= Zpkhﬂk wk\—ZkaIn (nlhr) (Wor|m)(m| = ZPkZancmkW m| .

m,n
(2.9)
The matrix elements of p in this representation are
Prm = (n|plm) = Zpkcnkcmk (2.10)

with the diagonal elements (n|p|n) = >, pr|cnk|* and pj,, = pmn, which means that
the operator p is Hermitian.

Example 1 (Density operator for a mized state): Consider the following
two possible superposition states of a two-level system,

) = A0+ /32)  and ey = /SI0+ /512 -

Being linearly independent, they form a basis. Let us assume that, for some
reason, we do not know whether the system is in state |¢1) or state |i)2). The
density operator describing our knowledge about the system is then,

= 3lv0) (W] + 3lv2) (¥ -
Obviously, p # 2, since

. 0.7 04 2 0.65 0.4
p= but p° = .
0.4 0.3 0.5 0.25
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Example 2 (Density operator for a single atom): For a very simple system
such as a single atom with several levels, that without spontaneous emission can
be described by a single wavefunction [¢1), we can let pp = d1x. That is, the
equations (2.9) and (2.10) reduce to,

p= chlcfnl\n><7n| and  (n|p|m) = cpich - (2.11)

m,n

2.1.1.1 Measurement and trace

The sum of the diagonal elements of a matrix representing an operator is called the
trace. This quantity represents a fundamental property of the density operator, since
it is invariant with respect to any unitary transformation:

Trp=Y (nlpln) . (2.12)
With the definition of the density operator (2.1) we can write the Eq. (2.12) as

Tr p=Y prnlvw) (Wuln) - (2.13)

n,k

Now, using the completeness relation,

Tr p =Y pr(tuln) () Zpk (Wilon) =1, (2.14)

n,k

which shows that the trace of the density operator representation is always 1 regard-
less of the basis of the matrix representation, thus justifying its interpretation as a
probability density distribution.

Expectation values of observables are expressed by,

i) = ZPk(TPkViWk) ~ (2.15)
e

On the other side,
PA =" " prltn) (ilA | (2.16)
k

and in the basis {|n)},

(n|pA|m) = n\zkawk (el Alm) =Y~ pi(nl) (el Alm) = 3 pi (el Alm) {nlo)
k k

(2.17)
Now, along the diagonal, we have,

(n|pAln) = Zpk<¢k\n><n|fi|¢k> : (2.18)
k
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With the completeness relation in the basis {|n)}, we now have 3,

Tr pA = pr(vel Alvw) = (4) | (2.19)
K

The Eq. (2.19) says that the ensemble average of any dynamic observable A can be
calculated from the diagonal elements of the operator matrix ﬁfl: Since the trace is
independent of the basis (this will be shown in Exc. 2.7.0.1), each unitary transforma-
tion taking the matrix representation from a basis {|n)} to another one {|t)} leaves
the trace invariant. Using the definition of a unitary transformation we can easily
show that the trace of a cyclic permutation of a product is invariant. For example,

Tr [ABC) = Tr [CAB] = Tr [BAC] , (2.20)

and in particular . . .
Tr [pA] = Tr [Ag] = (4) . (2.21)
In the Excs. 2.7.0.2 and 2.7.0.3 we apply the density operator to pure and mixed
states of a two-level system. In Excs. 2.7.0.4 and 2.7.0.5 we study thermal mixtures.

2.1.2 Spontaneous emission

Statistical mixtures are not only a consequence of incomplete preparation of the sys-
tem, but also occur if there is only partial detection of the final state. Suppose that
for a certain quantum mechanical system there is a complete set of commuting op-
erators and that the system is initially in a pure state. Performing a measurement
on the system means bringing it into contact with some kind of environment, which
will strongly affect some of the observables, in a way such as to destroy coherences
between them and to project them into a distribution of eigenstates |¢) with a prob-
ability distribution p;. If we read out the results, we filter a single eigenstate out of
the distribution, and conserve 'maximum knowledge’ of the system. If we don’t, then
we have to describe the system by a statistical mixture of states |i). Note, that the
system remains in a pure state with respect to the unmeasured observables, which
did not interact with the environment.

Suppose a system consists of two parts A and B, but only part A is observed. Then
information about part B is lost, and a statistical average over part B is necessary.
Using the density matrix to describe the system, one has to take the trace over part
B, or

pa="Trp paB . (2.22)

If the system was initially in a pure state pap, the incomplete detection process causes
the pure state to evolve into a statistical mixture p4.

Now, spontaneous emission can be interpreted as a strong measurement of the
excitation state of an atom, since the detection of an emitted photon would tell us

31n the presence of degeneracy or a continuous part of the spectrum we can generalize the definition
of the expectation,
(X)=Tr pX = (km|pX|km) .

k,m
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the state of the atom shortly after the emission. However, as the emission direction is
random, most spontaneous photons are never detected. Hence, spontaneous emission
converts a pure state into a statistical mixture . To be more specific, consider a
two-level atom in its excited state. After a short time the atom has a probability
to remain in the excited state, or it can make a transition to the ground state by
spontaneous emission of a photon. The evolution of this system is given by,

|¢> = a(t)‘ev 0> + Z ﬂs(t”ga ls> ) (223)

where the state of the atom is indicated by |g) or |e). The notation |0) means that no
photon has yet been emitted, and |15) means that one photon has been emitted into
the mode denoted by s = (k, €) with its wavevector k and its polarization é. Note
that the photon can be emitted in any direction with a certain polarization, so the
sum runs over all possible modes s. If one only observes the state of the atom and
not the emitted photon, then the atom will be found in either the excited state |e) or
the ground state |g); nevertheless, it will no longer be in a pure state. The new state
can be described by its density matrix pyiom:

Patom = Trphoton [9) (Y] = la(t)*le)(el + D 1Bs()*[g){gl - (2.24)

The pure state |1) has evolved to a statistical mixture of |g) and |e) since the emitted
photon has not been observed. Eq. (2.24) shows that phase information has been lost
from Eq. (2.23), and we immediately see that p2,,.. # patom-

The restriction to describing only the atom and the laser field and not the light
spontaneously emitted in arbitrary directions with arbitrary polarizations results in
a huge simplification, not to speak about the fact that spontaneous emission can-
not be properly handled within the framework of a semi-classical description of the
electromagnetic field as was done in Lecture 1, because it is induced by vacuum fluc-
tuations of the field. In his famous 1917 paper [52], Einstein not only showed that
stimulated emission was necessary to explain Planck’s blackbody spectrum, but also
derived the spontaneous emission rate using detailed balancing between spontaneous
and stimulated processes. Although his result is correct, his derivation does not show
the true nature of the spontaneous emission process. Its properties emerge from the
Wigner-Weisskopf theory that is summarized here [149]. In this theory it is shown
that an atom in the excited state decays exponentially as a result of the fluctuations
of the quantized vacuum field. The rate of this decay process is just the spontaneous
emission rate.

Consider an atom in the excited state at ¢ = 0 and no photons in the radiation field,
i.e. the system is initially in a pure state |e, 0). Making a transition to the ground state
by spontaneously emitting one photon into the radiation field, the system may evolve
toward |g,1s). The complete state of the system can now be described analogously
to Eq. (1.10) by,

(1) = ae™" e, 0) + > bee ot g 1) (2.25)

4See script on Quantum mechanics (2023), Sec. 14.3.1.
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Note that the frequency of the photon w in the exponent must be replaced by kc for
the summation. Even though the summation runs over an infinite number of modes,
this notation is sufficient for now. To describe the evolution of the wavefunction in
time, the Hamiltonian of the system has to be defined. This requires the quantization
of the electromagnetic field, which will be introduced in Sec. 2.5. However, the only
part of the Hamiltonian that couples the two states in Eq. (2.25) is the atom-field
interaction: the atomic and field parts play no role by themselves. Inserting Eq. (2.25)
into the Schrédinger equation,

hwe hQS hQs s aefzwet
d R hQs h(,ug 0 - bSIe—z(wg-i-w)t
@E%W(t) = H|1/J(t)> = Q. 0 hw .. bsze—z(w9+w)t s (2.26)
s g :
that is,
d —1wet —1wet —1(wg+tw)t
th—(ae™"“") = fweae™ " + 3 b e ot (2.27)

d
zh&(bse_’(“ﬁ“)t) = m}gbse_’(“ﬁ‘”)t + ahQ e et .

This coupling is analogous to its semi-classical counterpart discussed in Sec. 1.2.1,
and the result for the time evolution of the two states is,

db, (t)

Zda(t) B
B dt

o = a(t)Qrewwalt (2.28)

st(t)ﬂse_z(”_w“)t and 1

where w, = we —wy. These equations are similar to Eq. (1.18), where the coupling for
each mode is given by h{); = —dcq - EZ,J and € is called the vacuum Rabi frequency.
The dipole moment is dey = e(e|r|g) and the electric field per mode is found from the
classical expression for the energy density, u, = o|&,|2,

- hw
=€ . 2.2
Eu =&/ S (2.29)

Here V,, is the volume used to quantize the field, and it will eventually drop out of the
calculation. The total energy of the electromagnetic field in the volume V,, is given
by hw/2, corresponding to the zero point energy of the radiation field. By directly
integrating the second Eq. (2.28) and substituting the result into the first Eq. (2.28),
the time evolution of a(¢) is found to be,

da(t) 2 ! 1= (w— —t’
_ Q (w—wq)(t—t") " 9.
o = Es || /0 dt' e a(t") (2.30)

This represents an exponential decay of the excited state, and to evaluate the decay
rate it is necessary to count the number of modes for the summation and then evaluate
the time integral.
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To count the number of modes s = (k, €), we represent the field by the complete
set of traveling waves in a cube of side L. Since the field is periodic with a periodicity
L, the components of k are quantized as k; = 27n;/L, with i = z,y, 2. Then dn; =
(L/27)dk; and therefore dn = (L/27)3d?k. The frequency w is given by w = ck, so °,

Vw? |
dn=2 - 3r3g3 Sin Odwdfde . (2.31)
The factor of 2 on the right-hand side of Eq. (2.31) derives from the two independent
polarizations € of the fluorescent photons. Now replace the summation in Eq. (2.30)
by an integration over all possible modes, insert the result of Eq. (2.31), and then
integrate over the angles 6§ and ¢ to find

da(t) 1 s [ e
dt = 765071'2503 /dw w degA dt/ e ( )( )a(t/) . (232)

where the volume V has dropped out, since |Q2,|? & 1/V. In this result, the orientation
of the atomic dipole with respect to the emission direction has been taken into account,
which yields a reduction factor of % for a random emission direction.

The remaining time integral can be evaluated by assuming that the dipole moment
deg varies slowly over the frequency interval of interest, so it can be evaluated at
w = w,. Furthermore, the time integral is peaked around ¢ = ', so that the coefficient
a(t) can be evaluated at time ¢t and taken out of the integral. The upper boundary
of the integral can be shifted toward infinity, and the result becomes,

t

lim [ dt’ e M@ @)t — 26(w — w,) — P ( ‘ > ) (2.33)

t—o00 0 W — Wq

where P(x) is the principal value. The last term is purely imaginary and causes a
shift of the transition frequency, which will not be discussed further. Substitution of
the result of Eq. (2.33) into Eq. (2.32) yields the final result,

daf(t) r Wi,
= —§a(t) where TI'= 3reah

(2.34)

Since the amplitude of the excited state decays at a rate I'/2, the population of the
state decays with I and the lifetime of the excited state becomes 7 = 1/T.

The decay of the excited state is irreversible. In principle, the modes of the
spontaneously emitted light also couple to the ground state in Eqgs. (2.28), but there
is an infinite number of modes in free space. The amplitude for the reverse process
has to be summed over these modes. Since the different modes add destructively, the
probability for the reverse process becomes zero. The situation can be changed by
putting the atom in a reflecting cavity with dimensions of the order of the optical
wavelength A\. Then the number of modes can be changed considerably compared to
free space.

5See script on Quantum mechanics (2023), Sec. 1.3.2.
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2.1.3 Temporal evolution of the density operator

The equations governing the temporal evolution of a quantum system depend on the
choice of the picture, i.e. Schrodinger’s, Heisenberg’s, or the interaction picture. This,
of course, also applies to a system represented by a density matrix.

Returning to the density operator definition (2.1), we can express its temporal
dependence in terms of time-dependent quantum states and of the time evolution
operator U,

pE) =Y il () (r(t)] =Y prU(E, to) [vx (t)) (W (t0)[UT (¢, o) - (2.35)
k k

Writing,
plto) = 37 peltn(to) (ko) (2.36)
k

we see immediately,
p(t) = U(t,t0) p(to) U (2, t0) (2.37)
where, for the common case of a time-independent Hamiltonian,

Ut tg) = e HHt—t0)/h (2.38)

Now we find the time derivative of the density operator differentiating the two sides
of (2.37) and substituting the Egs.

dU 1 .
e &
dt 1h

at 1 .

— =——U'H 2.
and  — —U (2.39)

for the time derivatives U and UT. The result is

dp(t) _ 1 ((t), H] | . (2.40)

The commutator itself can be considered as a superoperator acting, not any more on
states but on operators, that is, we can write,

Lpt) = 7 1p(t), H] |, (2.41)

St

where L is called Liouville operator. The equation (2.40) is called Liouville equation
or von Neumann equation. The Liouville equation describes the time evolution of the
density operator which, in turn, describes the distribution of an ensemble of quantum
states. Even though the form of the Liouville equation resembles the Heisenberg
equation, Eq. (2.35) shows that p(t) is in the Schrddinger picture.

For a two-level system perturbatively interacting with a light field, the Hamilto-
nian can be decomposed into a stationary part and a time-dependent part,

H=H, + V(t) = H.e —d- & coswt , (2.42)

where H,. is the part of the Hamiltonian describing the atomic structure and V(t)
the interaction of the dipole transition with the classical oscillating electric field.
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2.2 Bloch equations for two-level atoms

Applying the Liouville operator (2.40) to a two-level atom coupled to a single-mode
light field, we will now derive the optical Bloch equations, first without spontaneous
emission. We will then introduce the atomic Bloch vector as a convenient and sugges-
tive method to describe the time evolution of a coupled two-level atom. Spontaneous
emission will only be incorporated into the optical Bloch equations in the subsequent
section.

2.2.1 The matrix elements of the density operator

Since the optical Bloch equations are coupled differential equations relating the el-
ements of the density operator matrix, we must examine the temporal dependence
of these matrix elements, based on our knowledge of the operator’s properties. We
begin with the Liouville equation (2.40) and evaluate the elements of the matrix,

om0 ) — im0, i) = imllp(0), e + V0)m) (243
= (B Bu)mlp)n) -+  ml[5(0). V(1))

where |m) and |n) are members of a complete set of vectors of a basis {|k)} which
are also eigen-kets of H,,. and span the space of H. Now, we insert the completeness
expression »_, |k)(k| = I in the commutator on the right-hand side of Eq. (2.43):

(ml[p(t), V()] = Y [mlp() k) (k[VIn) — (mlV|k) (k| p(t) )] (2.44)

k

For our two-level atom the complete set only includes two states: |1(¢)) = [1) and
|2(t)) = e~%0t|2). In addition, the matrix elements of the dipole coupling operator V'

are only non-diagonal, . R
= (1|V]2) = (2|V]1) . (2.45)

Hence, Eq. (2.43) adopts the form,

dp . .
% = P12V = paV]
2 . __dpu

g = aenVopeVi=——g

, (2.46)

dp R . R .
% = wopi2 + [V (P11 — p22)]
dp R ) R . dpy
—Zil = —wopar + £[V(p22 — p11)] = 222

remembering that the sum of the diagonal terms, called populations, must be unitary,
and that the non-diagonal terms, called coherences, are complex,

putpn=1 ., pu=pi. (2.47)



2.2. BLOCH EQUATIONS FOR TWO-LEVEL ATOMS 27

We have derived the optical Bloch equations from the Liouville equation, which
is the fundamental equation of motion of the density operator, but so far, the Bloch
equations do not include the possibility of spontaneous emission. We will learn later,
how to include this phenomenon.

2.2.2 Rotating wave approximation

In the following, we will only consider exponentials rotating with the frequency A =
w—wy, and we will neglect terms rotating like A = w-+wq. This approximation, called
rotating wave approzimation (RWA) is good, when the Rabi frequency is sufficiently
small, 2 < w. Otherwise, we observe an energy correction of the levels called Bloch-
Siegert shift. As we already did in deriving Eq. (1.23), the RWA can be implemented
in the time dependence of the coupling operator,

V(t) = hQcoswt — BQe " | (2.48)

neglecting the part 2hQet.

The set of equations (2.46) constitutes the optical Bloch equationsin the Schrodinger
picture. Transforming to the interaction picture removes the temporal dependence of
the basis vectors spanning the Hilbert space of the two-level atom. Once the RWA
made, we can transform to the rotating system by the prescription,

‘012 = proe ™", pao = pao

, (2.49)

which, applied to the Bloch equations in the Schrdodinger picture Eq. (2.46), yields,

dpas 182 dp12 LY
— — 2 — A — — . 2.50
dar 5 (p21 — p12) ar tAp12 + 5 (P11 — p22) ( )
In Exc. 2.7.0.6 we derive the Bloch equations from the equations of motion for the

population amplitudes a; and as.
For arbitrary starting conditions, the solution of these equations is not simple. To
solve the problem we write the equations in a matrix form,

11 0 0 0 —1iQ
| p22 _ 0 0 -5 5 X -
= A_ = 2 2 - A . . 1
=1, 7 20 10 A 0 , F=Ap|. (251)
P21 —%Q %Q 0 1A

To solve this system of differential equations, we calculate the eigenvalues of the
matrix,

det(A —\) = \2(A2+ Q%)+ M\ =0 (2.52)
A=0,+:G

with the generalized Rabi frequency G = /A2 + Q2. Therefore, the general solution

is,

1 2) o 3) —

paa(t) = pby) + pi e’ + plY) e (2.53)
1 2) 4 3) —

p12(t) = 052) + P(12)e oty sz)e @t
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The coefficients follow from the Bloch equations with particular starting conditions.

With a little algebra we get 6,

pé?zpm(m sz (1902 (1= 2022(0)) — A (2975(0) + Q2 p12(0))]

(2.54)

pzz = 17 [~12P(1 = 2022(0)) + (A + G)Qp35(0) + (A = G)2" p12(0)]
P55 = am [P = 2025(0) + (A = G)75(0) + (A + G)2 p12(0)]
pgy = g [AQ(L — 2p2(0)) + Q2 (Qp35(0) + Q2 p12(0))]

p12 = AG [ (1 —2p22(0)) + (A-l-G)Q*PTz( )+ (A =G)p (0)]
Pty = 558 [0 = 2p22(0)) + (A = O)Ep1(0) + (A + G)p1a(0)] -

To begin the discussion of this solution, let us consider a sample of atoms initially

in the ground state when the light field is switched on at time ¢ = 0,

p11(0) =1=1-p2(0) ,  p12(0) =0=p2(0) . (2.55)
In this case, the conditions (2.54) simplify to,
Q2 1
psy = o oy = 3z A0 (2.56)
2 —1Q? 2 _
Pé2) = 4|G2| ) p(12) = CiGZAQ
102 3 _
péz) = 4|G2|’ , P(12) = =0,
such that,
Q
pas = pé2) “1‘/)(2) 1Gt _,'_pg)e—zGt ‘4612 (2 RIc e—zGt) (2_57)
AQ A-G A+ G
2) o 3) — 2 7 —1 7
P12 (p12)+p( ) Gt p§2)e Gtygrlt (2@2 =T Gt _ o Qe Gt)eAt
20 A—A 1At
=12 ( cos Gt +1G sin Gt) '~ .
Using cosz = 1 — 2sin? 5 esinz = 2sin 5 cos 3, we finally obtain,
QP . ,Gt Q . Gt Gt Gt
pPag = |G—‘2 sin? - , pl2 = o sin > (A sin -5 + 1G cos 2) ettt (2.58)

2.2.3 Pauli matrices and the atomic Bloch vector

The internal structure of atoms is analyzed in atomic physics, where we find that the
energy levels are discrete (Bohr’s axiom). The center of mass motion of the atoms
and collisions with other atoms are ignored, and concerning the interaction of the
atoms with light, we are only interested in the aspect, that the interaction can induce

transitions between internal states via absorption or emission of photons.

It is the

duty of atomic physics to calculate the frequencies and strengths of transitions (by

6See script on Quantum mechanics (2023), Sec. 13.4.2.
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Hartree-Fock or similar methods), as well as their behavior in external electric and
magnetic fields. The results of these calculations are visualized in energy level schemes
called Grotian diagrams. In quantum optics we do not care, how the energies of the
levels were calculated, but accept them as given. That is, we assume the Hamiltonian
of the unperturbed atom to be diagonalized, so that according to (1.2) its internal
structure can be written as,

fae = 3" hesla) il (2.59)

The electronic states are orthonormal (i|j) = d;;, and we define the transition opera-
tors by
Gijlk) = djkli) (2.60)

and &;; = 0; satisfying the commutation relation,
[Gij, O1k) = 0j1Gik — 0ikGyj - (2.61)

Many times we will restrict ourselves to atoms of two or three levels. For a two-level
system we obtain the Pauli spin matriz. Every 2 x 2 matrix can be expanded on a
Pauli matrix basis,

(”“ p”) — [ (1] + a2 + 2051 (1] + [2hp222] (2.62)
P21 P22

=p11(3 + 362) + p126~ + p216T + paz(3 — 162)

= 0116167 + p1267 + p216T + padT 6T = (

This formalism can easily be extended to an atom with many levels 7. Solve the
Exc. 2.7.0.7.

For the two-level case it is useful to introduce an alternative notation based on
the Bloch vector,

2%e p12 (07) + (o) (0z)
o= 2Imps | = 1({o7) — (o)) = | (oy) | - (2.64)
P22 — P11 (0F07) —(070™) (02)

We also define the torque vector,

Q
G=|0 with |G| = G = V2 +A?, (2.65)
A

"The Pauli spin matrices are,

((1) (1)) ’ [’yE(_OZ é) ; &ZE(_OI 2) (2.63)

x

o
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the length of which is simply the Rabi frequency. With this, we can write the Bloch
equations,

dc

— =G x ¢ 2.66

T =Gx3|, (2.66)
as will be shown in Exc. 2.7.0.8. p12 describes the polarization and pae — p11 the

population inversion of the atom. The equation is analogous to the equation of motion
for a rigid rotor or spinning top (for example, a dipole in a homogeneous field).
It displays phenomena such as precession and nutation. The physical content and
usefulness of the Bloch vector will become clearer when we use the formalism to
analyze electric and magnetic couplings. In Exc. 2.7.0.9 we verify that the Bloch
vector is normalized (as long as spontaneous emission is not considered).

2.2.4 Manipulation of the state by sequences of radiation pulses

The temporal dependence of the three components of the atomic Bloch vector provides
a useful illustration of the atom-field interaction. Resonant coupling, A = 0 and
G = Q, puts the solutions (2.58) into the form,

p2(t) = 5(L—cosQt) ,  pia(t) = &sinQt (2.67)
that is,
0
Ft)=1| sinQt | . (2.68)
—cos 1t

That is, a resonant pulse rotates a Bloch vector initially pointing in the direction

—z within the plane z-y, until it arrives, at time ¢ = 55, at the +y direction and

at time ¢ = & at the +2 direction. This means that the entire population has been
transferred to the excited state. The Bloch vector continues to rotate (the movement
is called nutation) around the torque vector G which, as can be seen from Eq. (2.66),
points at the +z direction when A = 0. The nutation frequency is proportional to the
force Q of the atom-field interaction. With the Eq. (2.58) we see that the population
oscillates between the ground and excited state with the frequency 2. This means
that the energy hw is periodically exchanged between the atom and the field. A pulse
of resonant light of duration such that 7 = 7/2 is called a 7/2-pulse. The nutation
is illustrated in Fig. 2.1(a).

Once the coherence has been excited by a detuned radiation, A # 0, the Bloch
vector does not stand still, even after the radiation has been switched off. To see this,
we consider again the general solution (2.54) now entering 2 = 0. If the Bloch vector
is initially at a point in the unitary circle of the plane z-y, it will rotate according to
the formula,

p2a(t) = p22(0) ,  pra(t) = pra(0)e "2, (2.69)
that is,
P12 (0) sin At
F(t) = | p12(0) cos At | . (2.70)

2p22(0) — 1
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Figure 2.1: (code for download) (a) Nutation of the Bloch vector. The red circles show the
evolution of the Bloch vector on the Bloch sphere for a resonant m-pulse. (b) Precession of
the Bloch vector.

That is, the Bloch vector performs a motion of precession around the symmetry axis.
The precession is illustrated in Fig. 2.1(b).

The evolution of the Bloch vector on the surface of the Bloch sphere under the in-
fluence of radiation fields can be considered a coherent trajectory of the wavefunction
of the atomic state, which is therefore subject to interference phenomena [85]. Inter-
ferometers can be realized by sequences of consecutive pulses splitting populations,
exciting coherences, and remixing populations.

Sensors based on interferometry of atomic excitation are nowadays among the
most accurate and most sensitive. We will discuss the method of radiation pulse
sequences in Exc. 2.7.0.10.

2.3 Bloch equations with spontaneous emission and
line broadenings

2.3.1 Phenomenological inclusion of spontaneous emission

To find the Bloch equations including spontaneous emission, we insert the term —3T'as
obtained in Eq. (2.34) into the Egs. (1.18),

r da
a —15az = zd—tz ) (2.71)

O* cos wte™ot

that is, the equations of motion can be corrected by simply replacing,

das d T

Knowing pp,, = a,an, it is easy to check,

dpaa d dp1o d T
2 (2 p e (L), 2,
dt o~ (dt ) paz and dt o~ (dt 2) P2 (2.73)
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The Bloch equations become,
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P11 0 r 5Q -5 P11
d P22 0 T _% %Q P22
L Rl ) ~ 2.74
dt | p12 10 -1 AL 0 P12 (2.74)
o1 -0 10 0 1A — g P21

Example 3 (Langevin equation): The Heisenberg equation for the evolution
of the internal degrees of freedom, including the phenomenologically introduced
decay, is also called Langevin equation. It can be written as,

da

Yt~
and analogously for .. With the Hamiltonian H = hA& 6 + %EQ( “'s + h.c.)
we obtain, using the Pauli spin matrices, exactly the Bloch equations,

6]+ 10e™"[5,67] — iT6 = —A6. — 1Qe ™5, — 1T6
6]+ LQe™"6.,6" + 1Qe*"(6.,6] — 106, = —Q6"T - 6) — 176, .

ile, H] — :

2.3.1.1 Stationary solution of the Bloch equations

The dissipation introduced by the spontaneous emission allows the system to reach a
steady state. Letting the time derivatives be 0, we obtain the stationary solutions,

it
A? + 3O +

1At %Q(A — % )
A%+ 1|Qf2 + 112

paz(00) = p12(00) = (2.75)

12 ’
7l

This will be shown in Exc. 2.7.0.11. The denominators have an extra term %Qz
contributing to an effective widths of pos and pia,

Cer = /2|02 + T2 . (2.76)
This effect is called power broadening or saturation broadening. The phase factor et
describes the optical precession of the Bloch vector.
By introducing the saturation parameter,
212
=—— 2.77
BV SES @.77)

we can rewrite the stationary dipole moment and the excited state population (2.75)
as

)

s/2

s A—l/2 s
T ):emi/ (2.78)

Q 1+s°

p22(00) = . pra(oo

and

s/2
(14 9)?
Fig. 2.2(a) shows the Rabi oscillations damped by spontaneous emission. For long
times the population of the excited state paz converges to the asymptote (2.78).
Fig. 2.2(b) shows the temporal evolution of the Bloch vector subject to spontaneous
emission.

|p12(c0)? = (2.79)
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Figure 2.2: (code for download) (a) Rabi oscillations damped by spontaneous emission for
Rabi frequencies between Q/I" = 0.2,..,5. (b) Evolution of the Bloch vector subject to
spontaneous emission (I'12 = 0.05€12) after of a resonant w-pulse (blue) and after a m-pulse
with detuning Aio = Q12/2.

2.3.2 Line broadening mechanisms

While it is technically challenging to observe the dynamics of single atoms, it is
relatively easy monitor the dynamics of ensembles of atoms, provided that they react
synchronously to incident radiation. The concentration of a sufficient number of
atoms in a small volume can, however, introduce additional (desirable or undesirable)
effects. Collisions, for instance, induce (irreversible) decoherence. On the other hand,
if the ensemble is sufficiently dense that the mean distance between atoms is less than
a resonant wavelength, then the transition dipoles of the individual atoms will couple
to produce a collective dipole moment and generate effects known as superradiance.

Thermal motion of the atoms is another undesired effect, because every atom will
interact with the radiation on a different Doppler-shifted frequency. This leads to
diffusion of the individual atomic Bloch vectors in the z-y-plane, which in turn limits
the resolution of interferometric applications. We will discuss in Exc. 2.7.0.12 the
photon echo method, which allows to circumvent this specific problem.

These perturbative effects limiting the resolution of atomic spectroscopy manifest
themselves as broadening and/or shifts of atomic resonances. Free atoms, as well as
atoms confined in potentials, have kinetic energy and evolve on extended phase space
trajectories. If the spatial localization is less than the effective cross section of the
exciting laser beam, then the interaction time is limited and the resonance lines are
broadened by the Fourier effect in a process called transit time broadening, and the
efficiency of fluorescence collection is reduced. The same happens with the Doppler
effect: Only those atoms that have a specific velocity along the optical axis defined
by the laser beam can interact. Free as well as confined atoms can only scatter when
they are in specific cells of the phase space.

There are two different fundamental types of broadening. The so-called homoge-
neous broadening affects all atoms in the same way regardless of their positions or
velocities. It usually give rise to Lorentzian line profiles and can be included in the
Bloch equations. It correspond to an acceleration of the relaxation. Examples are the
natural linewidth, saturation broadening, and collision broadening.

The so-called inhomogeneous broadening is due to a displacement of atomic lev-
els, which may be different for each atom. Averaging over a large sample of atoms,
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the displacements generate an effective broadening usually with a Gaussian line pro-
file. It can not be included in the Bloch equations, but only as an average over all
trajectories of all atoms. It does not correspond to an accelerated relaxation. Inhomo-
geneous broadening is often due to external perturbations, e.g., Doppler broadening
and broadening due to temporal fluctuations or spatial inhomogeneities of external
electric or magnetic fields. In Exc. 2.7.0.13 we calculate the optical density of atomic
clouds. In Exc. 2.7.0.14 we present a spectroscopic technique bypassing the Doppler
broadening called Doppler-free spectroscopy and calculate the Lamb-dip profile.

2.3.2.1 Saturation broadening

Eq. (2.76) shows that when the power of the incident light increases, the population
of the excited state saturates at a limit value of poy = % The saturation parameter
defined in (2.77) measures the degree of saturation. When the narrowband light
source is tuned to resonance, the saturation parameter is basically a measure for the
ratio between the stimulated population transfer rate 2 and the spontaneous decay
rate I'. We can rewrite the stationary population of the excited level as in (2.78). In
resonance and with the saturation parameter s = 1, we obtain

Q=2Lr. (2.80)

We can use equation (2.80) to define the saturation intensity Isq for an atom with
the transition dipole dy2. The intensity is related to the electric field amplitude via,

I=1eocf . (2.81)

Therefore, using the definition of the Rabi frequency, hQ2 = d12&y, and the relationship
between di2 and I' given by Eq. (2.34), we have,

0 212ch
sat g0 3)\8

(2.82)

taking into account the degeneracies g; of the levels.

2.3.2.2 Collision broadening

The theory of atomic collisions covers a large area of research, including elastic and
inelastic, reactive and ionizing processes. In low-pressure gases at room temperature
or hotter we need only consider the simpler processes: long-range van der Waals
interactions that result in elastic collisions. The ’low pressure’ criterion requires that
the average free path between collisions be greater than any linear dimension of the gas
volume. Under these conditions, collisions can be modeled with straight trajectories,
along which the interaction time is short and the time between collisions is long in
comparison with the radiative lifetime of the excited atomic state. Then, the impact
of a collision on the emission of a radiating atom causes a loss of coherence due to a
phase interruption of the excited state atomic wavefunction. The term ’elastic’ means
that the collision does not disturb the populations of the internal states, so we only
need to consider the off-diagonal elements of the density matrix,

dpiz 0 yw_wo)t
a2 ¢

(p11 — p22) =7 P12 (2.83)
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where +' is the sum of the spontaneous emission v and the collision rate 7y,

v =54 Yoot | - (2.84)

The inverse of the collision rate is simply the time between phase interruptions or the
time between collisions. Now, for collisions between hard cores of atoms of mass m
(with reduced mass m,.q = m/2) and with radius p in a gas with density n consisting
of a single species, a standard analysis based on the kinetic theory of dilute gases
shows that the time between collisions is given by the collision rate,

Yeol = TC_Oll =onv , (2.85)

where v = 4/ fﬁli is the average collision velocity in a homogeneous gas at the
red
temperature T and o = v/8p? the collision cross section. Thereby & [148],

B 8p*n
Yeol %mred/ﬂkBT

Substituting the generalized 7' of (2.84) for v in the Bloch equations (2.75), we
find the stationary solutions,

(2.86)

1702 1
4~ |Q| , pla = el(wfwo)t fQ(A/ B Vyl) ) (287)

A2+%%|Q|2+7’2 A2+%%|Q|2+7’2

P22

The effective linewidth (radiative and collisions) is,

ot =20/ + 35102 (2.88)

When the excitation is sufficiently weak, so that power broadening can be neglected
in comparison to collision broadening, the second term can be discarded,

Lo = 2(7 + Yeol) - (2.89)

The equations (2.76) and (2.89) express the linewidths in the limits of dominating
power and collision broadening, respectively. Note that the susceptibility, absorption
coeflicient, and absorption cross-section retain their Lorentzian profile, but with a
larger width due to collisions. Since each atom is subject to the same broadening
mechanism, the broadening is homogeneous.

2.3.2.3 Doppler broadening

The Doppler broadening is simply the apparent frequency distribution of a sample of
radiating atoms at temperature T. The contribution of each atom to the radiation
appears detuned by the Doppler shift because of its velocity. The frequency shift for
a non-relativistically moving particle is w = wo/(1 — %), such that,

Azw—w0:w0%2k~v:k‘vz, (2.90)

8See script on Quantum mechanics (2023), Sec. 13.4.2.
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where k is the wavevector of the light and v is the velocity of the atom. This dis-
tribution of Doppler shifts of a gaseous sample in thermal equilibrium follows the
probability distribution of velocities,

P(v,)dv, x eI/ 2k T gy 67m62A2/2wngTw—codw . (2.91)

This frequency distribution is a Gaussian centered at w = wg and with the width,

(2.92)

2
FWHM = 2w, (W) .

mc?
A measure of the width is also the standard deviation,

oy _ 200 [keT _ FWHM
TN T 1A

(2.93)

From Eq. (2.91) we can see that the line profile is,

1 m
=——%¢
Vo kT

The profile compares with the Lorentzian profile Eq. (2.75) associated with natural,
power, or collision broadening. Doppler broadening is a property of the atomic en-
semble, each atom suffering a unique but different displacement than the other atoms.
Hence, it is called inhomogeneous broadening.

D(w — wp) —(w—w0)?/20% gy (2.94)

The Heisenberg equation used to derive the Bloch equations assumes immobile
atoms. However, we can easily apply the Galilei transformation to a system, where
the atoms move with the given velocity v,

(@ +v - V)p(r,t) = —[H, p(r,1)] . (2.95)

Since the light fields propagate as e"“*=%*) the solution of the above equation simply
follows from the immobile solution with the substitution A - A —k - v.

For a cloud obeying Maxwell’s velocity distribution, P(v) ~ e"’“’2kBT,
1 2 2
o(A) = /e_(k'v) 127 5(A —k-v)d(k-v) . 2.96
)= | o (k- v) (2.96)

The average of the density operator over all velocities, p, therefore follows as the
convolution of the density operator p (obtained as the solution of the Bloch equation)

and the Gaussian function G(A) = (2r§2)~1/2¢=A%/26,

PA) = (Gxp)(A) . (2.97)

It is clear that in many practical circumstances homogeneous and inhomogeneous
processes simultaneously contribute to the broadening of lines. In these cases, we
can consider that the radiation of each atom, homogeneously broadened by phase-
interruption processes (such as spontaneous emission or collisions), is displaced by



2.4. MULTI-LEVEL SYSTEMS 37

the Doppler effect within the Maxwell-Boltzmann distribution corresponding to the
temperature 1. The profile of the gaseous sample, therefore, is a convolution of
homogeneous and inhomogeneous profiles. The resulting profile is called Voigt profile:
(oo}
Vi(w—wp) = / L(w—wy — w)D(w — wp)dw' (2.98)
y /OO e_(""_WO)Z/QO'2
2027 J oo (w —wo — w')? + (7/2)

This integral has no analytical solution, but it is easy to solve numerically. Resolve
Exc. 2.7.0.15.

!
Zdw .

2.4 Multi-level systems

The two-level system represents an idealization of the real atom, since at least one of
the levels is usually degenerate. Many important phenomena in quantum optics are
not found in this system, but depend on the existence of a third level, for example,
optical pumping (essential for laser operation), quantum jumps or dark resonances
[which are at the basis of the phenomenon of electromagnetically induced transparency
(EIT)].

2.4.1 Liouville equation

The Liouville equation (2.40) describing the time evolution of the density operator
for a two-level system has been derived from the Schrédinger equation and thus only
accounts for the coherent evolution of the system. The dissipative evolution due to
spontaneous emission obtained from the Weisskopf-Wigner theory in Sec. 2.1.2 has
been introduced into the Bloch equation more or less empirically via the prescription
(2.73). Now, it is possible to show (see Excs. 2.7.0.16, 2.7.0.17, and 2.7.0.18), that
the two-level Bloch equations can be cast into the form,

pt) = (Lo+Lyp)p(t)  with
, ,  (2.99)
Lop(t) = ﬁ[ﬁ(t)7 H] and L= g(Q&;S&"‘ —6T6p—pota)
where 6% are the Pauli matrices. This equation is called master equation, and the

dissipative part of the Liouvillean is called Lindbladt operator. The Lindbladt operator
can also be derived in a rigorous way directly from a Weisskopf-Wigner calculation.

The derivation can now be extended to multilevel systems excited by several lasers
and coupled to the electromagnetic vacuum. The master equation (2.99) stays the
same, but with a generalized Hamiltonian and Lindbladt operator,

Hoe =Y hwibjicij ,  Hin = 55 (7065 + €9'65;) (2.100)
i

Lopp =Y Tij (635, p675) + 6335, 655] + 2B:5(63,675, p61;65] + [635615p,64;675])
,J
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where the ;; are transition operators satisfying the commutation rules (2.61). The
levels have the energy hw; above the ground level.

Let us first have a look at the coherent part of the master equation. The Hamil-
tonian in the semiclassical approximation (that is, the atom is quantized and consists
of several levels |i) with energies hw;, while the light fields are described by factors
ewiit with frequencies w;; tuned near the transitions |i)-|j)) includes the following
contributions

H=Hae+ Hapy =Y |dhoi(il+ Y [i)3Qu(jle™" +ce.. (2.101)
’ i<j with E;<E;

The Rabi frequency €;; is a measure for the force at which the levels |¢) and |j) are
coupled by the resonantly irradiated light field. The master equation can be simplified
by applying the rotating wave approximation and transforming to the coordinate
system which rotates with the light frequencies w;;:

Pij — ﬁijelw’ijt ) Hatomffield — e_ﬂ_h/hI:Iatomffieluleﬂ_“/ﬁ . (2102)

Finally, the master equation can be reformulated by introducing a generalized Bloch
vector, p, and the matrix representation of the Liouville superoperator £ as a linear
system of n? coupled differential equations,

d

ﬁﬁzﬁﬁ ) = (pu1 - Pnn P12 P21 . Pn-1 n Pn n-1) - (2.103)

Alternatively to the complex formulation, the differential equations can be written
for the real and imaginary part of the Bloch vector. The components p;; correspond to
the population probabilities of the levels |i), the non-diagonal elements p;; describe
the coherences between |i) and |j). Now, we must insert the Hamiltonian (2.101)
and the density operator p;; into the Liouville equation (2.40) in order to derive the
generalized Bloch equations. In practice, these calculations are simple but heavy °.

2.4.2 Bloch equations for three levels

In principle, three-level system can exist in three possible configurations, shown in
Fig. 2.3. Note that it is not possible to describe a three-level system with all levels
pairwise coupled by three lasers within the formalism of Bloch’s equations '°.

Defining the Bloch vector by Eq. (2.103), the Bloch equation matrix for three levels
in Raman configuration (that is, in A-configuration) using the labeling of Fig. 2.3(a),

9See script on Quantum mechanics (2023), Sec. 13.5.4.
10For the same reason that the three-body problem has no general analytic solution.
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2

Figure 2.3: Three level system (a) in A-configuration, (b) in V-configuration, and (c) in
cascade configuration.

f=Lp= (2.104)
0 IED T3 %ng —%Qm 0 0 0 0
0 —I'1jg — T'ag O 7%912 %Q]Q O O 7Q23 7%923
0 T2 ~Tis |0 0 0 0 —10s 0
0 —20n 0 —Ass 0 104 0 0 0
S0 200 0 0 —Ap 0 —10y 0 0
0 0 0 58023 0 —Ais 0 —582 0
0 0 0 0 =10 0 —Ajs 0 104,
0 %ng —%Qgg 0 0 —§Q12 0 —A23 0
0 Qa2 0 0 0 10, 0 —A3s
with Apn = 1Apn + Ymen and,
Avs = Ary — Aos (2.105)
Y2 =35T12+T23) ,  Y23=35T12+Tas+T13) ,  ms=30s.
In Exc. 2.7.0.19 we will derive the matrix (2.104).

The coherent terms of the same matrix can be used for the V- and the cascade
configurations shown in Figs. 2.3(b,c). Obviously, the incoherent terms, that is, the
submatrix 3 x 3 separated in the matrix (2.104) containing the population decay
rates must be adjusted, as well as the decay rates of the coherences on the diagonal.
Finally, the definition of the Raman detuning A3 must be adjusted. For the system
in V-configuration we have,

—TI'12—-T13 O 0

Lincon = IBP) 0 T3 ;o A=A — Ay (2.106)
I3 0 —Tgs
Yi2=3T124+T1s) . Y2s=3T13 . 73 =3(C2+Tis+Tas) .
For the cascade system we have,
0 T INE
Lincon =0 —T12 [o3 ;o A=A —Agg (2.107)

0 0 —I'13 —I'23

Y2 =32T15 . y3=3T12+Tos+T13) ., 3= 31(T13+Tas).

P11
P22
P33

P21
P13
P31
P23
P32
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These matrices serve to calculate, among others, the phenomena of Autler-Townes
splitting treated in Exc. 2.7.0.20, of the quantum Zeno effect 2.7.0.21, of the light-shift
treated in Exc. 2.7.0.22, the dark resonances treated in Exc. 2.7.0.23, the STIRAP
method treated in Exc. 2.7.0.24, adiabatic sweeps treated in Exc. 2.7.0.25, and the
dispersive interaction between atoms and light treated in Exc. 2.7.0.26.

2.4.3 Numerical treatment of Bloch equations

Since the differential Bloch equations are linear, they can be easily solved. For exam-
ple, the prescription

plt) = e~ 5(0) (2.108)

propagates the Bloch vector to later times.
The matrix £ is not invertible, but by applying the condition Tr p = 1, a compo-
nent of the density matrix can be eliminated, for example by letting,

pi=1- puk - (2.109)
k

The resulting state vector, jreq, has the length n? — 1, and from £ we obtain the
(trace-)reduced, now invertible matrix £,.q and the inhomogeneity vector b. The
differential equation is now,

d "
—7 Pred = ‘Credpred + b ; (2110)
dt
with the stationary and time-dependent solutions,
= _ _pr-1 = — o Lredt > _ JLredaty 7
Prea(00) = =L b o frea(t) = € frea(0) + (1 = e5m<4") freq(o0) | . (2.111)

Once the matrix £ or the matrix £,.q and the inhomogeneity vector b are determined
for a system, the state of the atom can be calculated at any time, as well as the
populations and coherences. The system’s free parameters are the natural transition
linewidths and the detunings, as well as the intensities and emission bandwidths of
the incident light fields.

2.4.3.1 Numerical simulation of the Bloch equations

When the Hamiltonian or Liouvillian depend on time, for example, when the Rabi fre-
quencies are pulsed or the detunings are ramped, we must solve the Bloch equations
iteratively. We have seen in (1.37) how to numerically solve a Schrodinger equa-
tion, when the Hamiltonian is time-independent H(t). The same can be done with
the Bloch equations written in the form (2.108) or (2.111) with a time-independent
Liouvillian £(¢). That is, we chose time intervals dt sufficiently short, so that the Li-
ouvillian can be considered constant during this interval, and we propagate the Bloch
vector to later times via:

ot +dt) = O (e or gt +db) = £OUp(E) (2.112)

and insert the solution obtained again into equations (2.112) with the Liouvillian
L(t + dt) adjusted to the new time.
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Example 4 (Electromagnetically induced transparency): In some special
cases, the three-level Bloch equations can be solved analytically. The system
in A-configuration schematized in Fig. 2.3(a), where the two lasers satisfy the
condition Aj2 = Ass can exhibit a dark resonance leading to the phenomena of
electromagnetically induced transparency (EIT) and electromagnetically induced
absorption. In these resonances a dramatic change of the refractive index is
observed despite the fact that the atom becomes transparent, Re x > 0 and

[Tm x| < Re x:
Ren=+1+Re x>0,
resulting in a high group velocity,

v — ¢
7 + wg—g .

EIT is usually studied in A-type systems, but similar phenomena can be found
in cascade-type systems [155, 154], which will be studied here. Disregarding the
decay rate I'13, the Bloch equations (2.104) and (2.107) give the coherences,

. Q o

prz = —Ai2pi2 + “F2(p11 — p22) — S22 i3
. * Q Q

p13 = —Aizp1s — S52 paz — £ p1o

Q12

p23 = —Nazpas + 19223 (p22 — p33) — =52 p1s .

Assuming stationarity and negligible depletion of the ground state, p11 = 1,

2182 2192
0= —Ai2p12 + 5532 — 5 p13
* 202 202
0= —Aj3p13 — =52 p23 — "2 p12

28212

0= —Aa3p23s — “52p13 .

Substituting the third into the first equation,

0=—Ai2p12 + ZQ% - m%pw
* 02 2100
0=—Ai3pi3 — ﬁpw - 9223 piz -
and finally,
18212 4A33A23 + Q5

e = 2 A2 (4AI3A23 + 9%2) + Q§3A23 .

The macroscopic polarization is now P = %dlgpm, with the number of atoms

N. In the limit of weak probes, the dressed susceptibility follows from P =
_ N

coxEi2 = {rdizpan,

_ Ndi2 - N|di2]?
X VE()E12 P2 VE()ﬁng p21 -
For a resonant probe laser, Aoz = 0 and with I'13 ~ 0, we have A13 = %Fzs-HAu
and Aoz = %(F23 +T'12). The susceptibility in the probe transition is now, using
2
@ = F23 + L

2A03"

2 o}
o N|d12‘ Taz+ 2A1223 —21A19

— WL12 3
Q
Veohfia <r23+2A1223 _21A12)(F12+21A12)+Q§3

2
— N|d12‘ 2912 O—21A12
VeohQio (@—21A12)(F12+21A12)+Q§3

— XI +ZX” .
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We consider, for example, the intercombination line of atomic strontium *Sp-
3P (A2 = 689nm and T'12 = (27) 7.6kHz) be the 'dressing’ transition *P;-
(554d)® Dy (A23 = 2700nm and T3 = (27) 90.3kHz), be the ’dressing’ transition
3P1-(5s5d)® Dy (23 = 497nm and T'az = (27) 2.3 MHz), both characterized by
FZB > 912, F12, |A12‘7 such that © ~ Fzg. Hence,

' = N\d12\2 2A12 + 123
XX T Vo T Qs

The refraction index follows with,

1
n:\/l—f—le—i—éx.

Its imaginary part originates from the decay term of the atom: it is here respon-
sible for the absorbing nature of the cloud. EIT is characterized by a pronounced
dispersion and a small concomitant absorption.
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Figure 2.4: (code for download) EIT signal for the cascade system of strontium with the
transitions at 689 nm and 497 nm with Q12 = I'12, Q23 = I'23 and Ass = 0. The red lines are
calculated by numerical integration of the Bloch equations. The dotted lines are obtained
from analytical formulas based on the assumptions of weak ground state depletion (which is
not really correct in the chosen parameter regime.

2.5 Quantization of the electromagnetic field

So far we have treated the optical field only as a stationary or propagating classical
wave, while our two-level atom has been regarded as an entity obedient to the laws
of quantum mechanics and subject to an induced perturbation by an oscillatory elec-
tromagnetic field. This procedure naturally leads to oscillations of the atomic states’
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populations and the coherences between them. However, in strong fields, when atomic
energy spectrum is significantly modified, a non-perturbative, time-independent ap-
proach can be fruitful. Time-independent solutions for the Schrédinger equation for
atoms coupled to fields is called dressed states. They were used for the first time to
interpret the splitting of rotational molecular spectra in the presence of intense clas-
sical radiofrequency fields. While the semiclassical treatment is suitable for a wide
variety of phenomena and has the virtue of mathematical simplicity and familiarity,
it is sometimes worth considering the field as a quantum entity as well. In the dressed
states picture, the atom-field interaction corresponds to an exchange of energy quanta
between the field (photons) and the atom. This approach allows us to express pho-
tonic number states, also called Fock states, on equal footings with the discrete states
of atom excitation and to write the state functions of the coupled atom-field system in
a basis of photonic and atomic product states. Diagonalization of the dipole coupling
terms in the system’s Hamiltonian generates time-independent solutions of dressed
states in a completely quantum Schrédinger equation.

We begin this lecture with the quantization of the light field and then express
the atom-field interaction in a fully quantized form. We will examine some examples
illustrating how the dressed states picture can provide useful information on the light-
matter interactions.

We have already seen that the energy of a monochromatic light field with frequency
w is quantized in small equal portions, such that the total energy is Nhw, where N
is an integer number. The energy spectrum is the same as the one of the harmonic
oscillator. Therefore, we can identify a light mode with an oscillator and adopt the
entire formalism developed for the harmonic oscillator. The formalism will be assumed
as known in the following. We will, for simplicity use the term photon (respectively
phonon) for excitations of a harmonic oscillator mode. It is however important to be
aware that a photon is not a particle, as it simply disappears when performing the
transition from quantum to classical mechanics [100].

2.5.1 Field operators

The basic idea behind field quantization is the replacement of the classical harmonic
oscillators by quantum oscillators. The simplest approach to perform this quanti-
zation is to introduce the scalar potential ® and the potential vector A as done in
electrodynamic theory '!. In free space, without charges nor currents, and within the
Coulomb gauge we have the solution of the Helmholtz wave equation generalized to a
distribution of wavevectors k 12,

Alrt) =) GfAfeetra) 4 A erler—ad] (2.113)
k

where we already isolated the vectorial character due to the polarization €j of the light
mode k. Obviously, Ay, = (Aark)*. As each amplitude and polarization of the wave

1See the script Electrodynamics by the same author Scripts/EletroMagnetismoScript.

12The atom-light interaction may depend on the polarization of the light with respect to the
quantization axis of the atom, as defined e.g. by a magnetic field. In these cases we need to extend
the index k to include the polarization state (k, \).
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given by the vector potential Ay and A} must satisfy the wave equation separately,
we arrive at the dispersion relation,

wx = ck . (2.114)
We know that the energy in each radiative mode containing nx photons is,
Ex = hweN = uV = 2e0Vwi A, = 2e0Vuwi (Ag Ad + Al Ag) (2.115)

where the bar denotes cycle-averaging. The second quantization now consists in
interpreting the mode as a quantum harmonic oscillator, that is, we understand the
observables as operators satisfying commutation rules, such as [Aak,/lgk/] X Ok K/,
and hence being affected by quantum fluctuations:

Hy = hwe (i + 3) = 260V (A Age + A Aoy - (2.116)

We introduce normalized field operators following the commutation rule via,
~ | hn i+ -t [ n
ax\/ Teovar = Aj.  and 4y TeoVon

Hk = hLdk(&Ldk + %) . (2.118)

Ay (2.117)

such that,

The analogy allows us to interpret them as creation operator and annihilation operator
of photons satisfying [ax, &L] = 1. Finally, we can rewrite (2.113) as,

Awr,t) =/ b é [akeﬂ(k'”w) + af(e“k'”*wﬂ)] . (2.119)

We already know such combinations of operators and their complex conjugates from
the quantum harmonic oscillator.

In the Coulomb gauge, the electric and magnetic field operators for the cavity
modes can be constructed from,

> oA
b = - 8tk =t 2;?:;1‘(/ (dkeil(kvriwt) - diel(k.riwkt)) €k

(2.120)
B = VxAg=1/5% (ake%k-r*wt) —~ aj{eﬂk-r*wt)) k x &

We can calculate the cycle-averaged energy of the k-th cavity mode from a quantum
version of Eq. (2.115),

Ek = %J /(nk|gk . 5k|nk)dV . (2.121)

The result (2.118) is exactly Planck’s quantum hypothesis (although strictly speak-
ing, he rather suggested a quantization of oscillators in the conducting walls of the
cavity, not of the field) on the distribution of the spectral intensity radiated by a black
body. We now can see that it follows naturally from the quantization of the cavity
field modes. Solve Excs. 2.7.0.27 and 2.7.0.28.
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2.5.2 Interaction of quantized fields with atoms

With the results of the previous section the complete field Hamiltonian reads,

wald = Zhwk Gy Gy + ) (2.122)
k

Now, that we have a clear picture of the quantized field with the energies in the
modes given by Eq. (2.121) and the photon number states given by the eigenstates
|n) of the quantized harmonic oscillator, we are in a position to consider our two-level
atom interacting with this quantized radiation field. If for the moment, we exclude
spontaneous emission and stimulated processes, the Hamiltonian of the combined
atom-field system is,

];AI = ﬁatom + ﬁfield + I:Iatom:field . (2123)
We describe the atom by a two-level system,
Hatom = huwglg){g] + hewele) (e] = huwylg){g] + hlw, + wo)le) (e , (2.124)

where H tiela is the Hamiltonian of the quantized field, expressed by Eq. (2.118),
and Haiom: fieta the atom-field interaction. For the Hamiltonian without interaction,

H = ﬁatam + Hfiezd, the eigenstates are simply product states of the atomic states
and the photon number states,

lg;n) = lg)|n)  and le,n) = |e)|n) . (2.125)

The left side of Fig. 2.5 shows, how the eigenenergies of the product states consist of
two ladders, being displaced by the energy difference A, which corresponds to the
detuning. We write the Hamiltonian of the atom Eq. (2.124) as the sum of projectors
on unperturbed eigenstates using the completeness relation and the orthogonality
of eigenstates. With the same idea we can rewrite the dipole operator defined in
Eq. (3.13),

4= IS ] = 3l Al (2.126)
=2 TG = 3 T ]+ T i = 2T+ 30
1<j

using [, (t)) = e=*nt|n). Note that d only has non-diagonal elements.
Now, let us use the electric field of Eqs. (2.120) to describe the atom-field inter-

action through the Hamiltonian Hatom: Field = —d- 5

ﬁatom:field = ZZ Z QZWI“/d €l(w1 wl)t‘ ><]| - €k dke_l(k.r_wkt) — &Lel(k-r_wkt)

(2.127)
For our two-level atom interacting with a single mode radiation field, we only have,

Hatom:field =1 250Vd96 |: z(we—wg)t|g> <€‘ + eZ(UJg_We)t‘e> <g|:| . (2128)

B [&ke—z(k.r—wkt) _ &Lez(km—wkt)] )
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field states atom states atom-field product states  dressed states
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Figure 2.5: (Left) Photons number states and the two stationary states of the two-levels
atom. (Center) Double ladder showing the basis of products states of photon number and
atomic states. (Right) Dressed states constructed by diagonalization of the full Hamiltonian
in the basis of the product states.

2.5.2.1 Rotating wave approximation for dressed states

We can simplify the notation by identifying 6% = |e){(g| and 6~ = |g)(e| and intro-
ducing as an abbreviation the Rabi frequency,

$h(r) = |/ 3% dg - G’ (2.129)

The interaction Hamiltonian then becomes,

Hatom:fieta = 211 ()" @20 6F gy 4 L1Q, (r)e!@eteo)t s =gy (2.130)

— QY (r)e T @twltatal  LpQ (r)e Tt @ enltg )

3

)

This Hamiltonian contains four terms describing the following processes !
lg,n) — |e,n — 1) the atom is excited by the absorption of a photon;
le,n) — |g,n — 1) the atom is deexcited by the absorption of a photon;
lg,n) — |e,n + 1) the atom is excited by the emission of a photon;
le,n) — |g,n + 1) the atom is deexcited by the emission of a photon.

Obviously, only the first and forth terms respect energy conservation (in first-order
processes) and can serve as initial and final states in real physical processes. Fig. 2.6
shows schemes of these four terms. We see, that neglecting the second and third
process (i.e., terms oc Ta* of the Hamiltonian) is equivalent to making the rotating
wave approximation (RWA), where we despise the terms rotating with the frequency

I3Remember that the four processes contained in the Hamiltonian are all coherent (absorption and
stimulated emission), and that spontaneous emission must be treated separately.
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+(wk + wo), and that we really only need to consider the coupling between the two
dressed states |g,n) and |e,n — 1).
Finally, within the RWA the Hamiltonian reads,

Hatom: ieta = 2hQ (r)e” "2 6T ay, — ghﬂ*;(r)emkf&—a; , (2.131)

where we introduced the detuning Ax = wx — wp as short hand notation.

It is important to note that the first and fourth term can be important in higher
order processes, such as multiphotonic absorption or Raman scattering processes,
where the excited state would be a virtual level. In fact, when the Rabi frequency
is very large, {1y ~ w, the excitation and deexcitation processes follow each other so
rapidly, that energy conservation can be violated for short times. The energy shift
caused by terms neglected in the RWA are called Bloch-Siegert shift 14.

2.5.3 Dressed states

Within the new dressed states basis, the atom-light coupling problem is reduced to
diagonalizing the Hamiltonian of a quasi-degenerate two-level atom (JA| < wyp), in
which the non-diagonal elements are given by %th. The eigenenergies of the complete
Hamiltonian H are,

By =Bwgn +we 1) £ 2G. (2.132)

where 7wy, and hwen,—1 are the energies of the product states fw, + nhwi and
hwe + (n — 1)hwy. The separation between constituents of the same dressed state is

G=./07 + A2

(a) (b) (c) (d)
1 |e> E |e> |n_1> 1 |e> |I’l—1> E |e>

)

[n=1) n=1) ) : )

l2) —1g) —1g) —1g)

—_—

Figure 2.6: Illustration of the four processes in the atom-field interaction. Terms (b) and
(c) conserve energy in first-order processes, while (a) and (d) do not conserve.

The atom-field product states offer a natural basis for the Hamiltonian of Eq. (2.123).
The states resulting from the diagonalization of the Hamiltonian on this basis are
called dressed states. As indicated in Fig. 2.5, the neighboring doublets the dou-
ble ladder ’repel’ each other under the influence of the interaction Hatom: field in
Eq. (2.123). The mixed coefficients form the familiar problem of two levels, now
called |a) and |b). Note that the semiclassical product state picture and the dressed

14T he shift is not observed, when the non-rotating terms o a¥ are forbidden by other conservation

or selection rules. For example, when a resonance is excited by ot light, the RWA is accurate.
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states picture follow from each other via unitary transformation,

<||Z,’ xi) =v <|e,|€5 ﬁ>1>>

and, hence, are equivalent descriptions of the same reality. But while in the product
state picture the system Hamiltonian is diagonal in the absence of atom-light inter-
action, in the dressed states picture the Hamiltonian is diagonal in the presence of
interaction. The numbers n denote the amount of photons in the laser beam, the num-
bers N denote the amount of energy packets within the system, that is, the photons
plus the possible excitation of the atom. The expression of the unitary transformation
matrix will be derived in Sec. 2.6.1.

(2.133)

(a) (b)

: —lg.2) B
. ‘b92> Ok
H -=
g2 —F— @ h2) ——jgl)
ok b,1) Ok
21y —— G} fal) Y 120)
()2
g

[o o

Figure 2.7: (a) Rabi splitting of the lowest dressed states. (b) Avoided crossing of dressed
states.

2.6 The Jaynes-Cummings model

The Jaynes-Cummings model describes the dynamics of a single dressed two-level
atom in a single monochromatic laser mode in the absence of spontaneous emission
processes. The model, illustrated in Fig. 1.6, has become a paradigm of quantum me-
chanics with applications in quantum information, where it applies to the formulation
of entanglement protocols of atomic states and the implementation of quantum gates.
In the following, we will first study the interaction of an atom with an optical mode
neglecting dissipation effects and leave the discussion on the impact of dissipation
processes to later sections.

The dynamic evolution of pure states is then obtained from the Schrédinger equa-

tion. The Hamiltonian of this system is given by (2.131). Letting & = 1 and assuming
that the atom is located at the origin [such that ©;(r)e’ ™ = ,(0)], we can write
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the time-dependent Hamiltonian in the interaction picture as,

Hr = Qe ™éta— tQetio—al
B 0 %Qle—lAtd . (2134)
ettt 0

where w is the frequency of the radiation, wq the frequency of the atomic transition,
A = w—uwy the detuning, and ; the Rabi frequency generated by a single photon. We
use the conventions 6% = [67,61] = [1)(1| —[2)(2| =1-2676 and wy = ws —wy > 0.

Starting from this Hamiltonian the Jaynes-Cummings model is translated into the
Schridinger picture via the unitary transform,

U = e—l(ﬁ-‘rl/Q)wtelszUJ()t/Q ) (2135)
for which we find the relationships,
—UUT = w(f + 3) — Lwoé” (2.136)
U&UT — En,|n/>€—zn/wt<n/|d2n|n>eznwt <n| — ezwt&
U6~ U = e ols™

Obviously, the dynamics of the states is now given by [1(t)) = Ul(t)), and the new
Hamiltonian in the Schrédinger picture reads,

H = UHU'—wWUt
- w(h — leos® 4 1Oy (a6t + ate
w(n+ 5) — 5wo0* + 50 (a6™ +a'6™) (2.137)
o ((ﬁ =+ %)w — %UJO %QldT )
- 14 (R + 3w + 2wo

We choose the Fock representation for the radiation mode, we represent the atomic
transitions by the Pauli matrices, and we span the product space pficid @ Patom gen-
eralizing the operators a* ~ a* ® I and 6* ~ I ® 6*. Explicitly we get,

ot = ;\/ﬁpww ((1) ?) (n| and 6+ = zn]n) ((1) 8) (n|

a ;\/ﬁm—n ((1) 2) (| and  6- = %]n) (8 é) (n .

(2.138)

2.6.1 Dressed states representation

I1,n) = (é) L 2Zn—1) = (i’) (2.139)

The basis



50 CHAPTER 2. THE BLOCH EQUATIONS

spans a sub-space of two energetically nearly degenerate states with n photons in the
system one out of which can have been absorbed by the atom. The density operator
for the subspace is,
1)(1 D{2[{n -1
ﬁn< WLAIm )1l -1 > | 2.110)
In—=1)|2)(1|(n| [0 —1)|2)2|(n — 1]

We project the Hamiltonian onto that basis via the projectors P = |1, n)(1,n|+|2,n—
1> <2a n— 1|7

A1
H,=PHP = (’1‘” t 3 291@) . (2.141)
591\/’77/ nw — 3

That is, the Hamiltonian can be decomposed into sub-hyperspaces which are all or-
thogonal, because the Hamiltonian H only contains terms conserving the total number
of photons + excitations.

Example 5 (Orthogonality of submatrices with same numbers of exci-
tations): This can be seen by expanding the Hamiltonian matrix:

H=H, (2.142)
nw + 3 0 0 2 /mF1
= -1 1 2
R R O A O
A
? A Q
Wgs 2,
o o wo 3

The eigenvalues can be easily calculated by %,

det > H, =) detH, (2.143)

defining the generalized n-photon Rabi frequency, @, = /A2 +nQ? = |w, |k R,
which contains the spatial mode function of the radiation field. We find the diagonal

matrix of eigenvalues,
- nw + == 0
E, = 2 . (2.144)

_ @n
0 nw 5

15The following rules apply to determinants,

det(AB) =det Adet B and  (det A)~!=det A1 .
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From the transformation H,U,, = UnEn, under the condition that U, is unitary and
Hermitian, UU,,, and using the abbreviation tan 2¢, = /nQ/A, we obtain:

U, = ( €08 n Sin%) . (2.145)

—sing, coso,

The temporal evolution of the Jaynes-Cummings state, |(t)) = e*’m|¢(0)>, is de-
scribed by the transformation,

e—ant — Une—iEntU:L — e—znwtx

y cos2 ¢ne—zwnt/2 4 sin2 ¢nezwnt/2 cos ¢n sin ¢n(ezwnt/2 _ e—zwnt/2>
oS djn sin ¢n(€zwnt/2 _ e—iwnt/Q) Sin2 (Z)ne—zwnt/Q + COSQ ¢nezwnt/2

(2.146)
which is essentially the same formula as for the time evolution of a two-level atom
driven by a classical light field. The transition probability between dressed states is,

_ AnQIA?  , wpt

(2,1 — 1|e" |1, n) |2 oSt (2.147)
The temporal evolution follows with [89],
p(t) = e~ Hnt 5(0)eHnt = £(1)5(0) . (2.148)

Alternatively to the master equation (2.148) we could describe the time evolution of
the system by Heisenberg equations, as done in Exc. 2.7.0.29.

2.6.2 Classical and quantum limits
2.6.2.1 The limit of high laser intensities and resonant interaction

The classical limit is recovered for n — oo, where a single photon makes no difference,
that is, we can treat the states |n) and |n+1) as equivalent. Then, we can approximate
the Hamiltonian of the system (2.139) by the trace of this same Hamiltonian taken
over the number of photons,

Hyemi = lim Trpicapll = > (m|pH|m) . (2.149)

m
This situation, as illustrated in Fig2. 2.8, describes well the state of a laser as a co-
herent state, |a) = > %|n>e"o‘| /2. For n — oo, the uncertainty of the Poisson
distribution is small, An/% = 1/4/n — 0, such that the light mode is characterized
by the average number of photons, and fluctuations are negligible. This allows us to
replace the Poisson distribution, P, = [(n|a)|? = 6pa,

ﬁsemi = I:Ifield + I:Iatom + ﬁatam:field = Z<m|a><a|ﬁ|m> = <O‘|H|O‘> = <7_7'|ﬁ|7_7'>

m

- nw 0 —£ 90 0o =
—H. = 2 R 2.1
(5 @ )+ (o )+<w o) (3150
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Now, in the case of a resonant interaction, A = 0, the Jaynes-Cummings evolution is,

1 21
A - cos 3wt 1sin swat
ot _ \%e—z(n—l/mwt( s 3@n 12“_?%) , (2.151)
tsin st cos ;wit

Example 6 (Resonant w/2-pulse): In this example, we consider resonant 7 /2-
pulses, that is, vaQt = %77. The Jaynes-Cummings evolution now simplifies to,

- e (1
o—fnt _ %e—zw—l/z)wt ( Z) , (2.152)
v 1
For large 71, a resonant 7/2-pulse does (ignoring irrelevant dynamical phases),
‘12‘71) /2 (2\2)[71 -1)+ |1>|7>) 7 (2.153)
12)|7 — 1) (12)[n = 1) +2|1)[n))
that is, for a coherent field,
D) =2 (@I2) +[1))]e)) (2.154)
|2)]a) (12) +2]1))|ev)

Obviously, the structure of the field |a) is not affected, and we recover the dy-
namics of a two-level atom excited by a resonant classical radiation as described
by the Bloch equations (2.51). In the language of quantum computation the
operation (2.152) corresponds to a Hadamard gate.

resonant _dispersive
o A

Figure 2.8: Atomic level scheme for the implementation of resonant interactions with classical
radiation fields (on the lower transition) and dispersive interactions with quantum fields (on
the upper transition).

2.6.2.2 Dispersive interaction, the limit of large detunings

The dispersive Jaynes-Cummings dynamics can be implemented by irradiating a light
field, which is sufficiently detuned to avoid Rayleigh scattering processes, as shown in
Fig. 2.8. This interaction results in a phase shift of the atomic levels. For |A] > 1/nQ
we consider the radiative coupling as a small perturbation,

A Q
N N N - = 0 0 =L \/ﬁ
H, = J24Q) (1 (W= 3 + 2 . 2.155

" " 0 nw + % %\/ﬁ 0 ( )
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In the unperturbed case we have, ﬁ£0)|d)j7n> = FE,; »|¥;n), where the n-photon sub-
space is spanned by the basis |j) = (1 0) and (0 1). In second perturbation order,

0 <-A(1)- A 2

; L T I GG g2
(Wi D in) = GUESAET) + 30 W — w2 (2.156)
i#i Fa

i,n

where the upper sign holds for |j) = (1 0). This result was already obtained in the

Exc. 2.7.0.22. In matrix notation 6,
- 02 /4A 0
HD ~ (™M1 . 2.157
" 0 —nQ3/4A ( )
The temporal propagation operator (2.146) then simplifies to,
. mQ2t /4N
Y OO PR e 0
€ ro= 0 e—an?t/AlA (2158)

The fact that the ground and excited atomic states evolve with different phase factors
is important, as we will show in the following example 17> 18,

Example 7 (Dispersive w-pulse): As in the previous example, we consider
a two-level atom subject to a coherent field, but now tuned out of resonance.
Introducing the abbreviation ¢ = Q3t/4A, the Jaynes-Cummings evolution is,

() mne 0
e Hn 't — (eO e’"”) . (2.159)

The fact that the phase shift ng depends on the number of photons, and that
it goes in opposite directions for the ground and excited states, is crucial. The
dispersive interaction of the atom with a radiation field can phase-shift the
Bloch vector. Now, we observe that in addition, it causes a phase shift of the
probability amplitude of having n photons in the radiation field by a value
proportional to n, i.e. (ignoring irrelevant dynamical phases),

Dim) \ me (e )R
<2>|n1>> <e”‘“’2>|n1>> - (2.160)

16Note, that the same perturbation expansion applied to the complete Hamiltonian in the inter-
action picture yields,

_ 10,4t
AWM = ( 0 3tha ) = loa6t + Logate

lwa 0 )2
(D) IONE-16) (1) St
AWM 2y 2| H AW i 2 s
~ M 2RI Hy I {H, =f—&(&*&+a*a7&+&*a&f):f&( aa A91> .
w2 — w1 w1 — w2 0 aa

17This example assumes prior knowledge of coherent states, which we do not have the space to
introduce here properly. Let us just state that coherent states are coherent superpositions of Fock
states, which share many similarities with classical states,

oo

— a2z @
la) =e ;}mm.

18See script on Quantum mechanics (2023), Sec. 3.6.
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Applying this result to Glauber states,

[1)]a) ne 1>, %67””; n) B |1)|ce™"%) ‘
<|2>|a>> ( 12) 22, f}%@mﬂ”ﬁ ) < |2)|ae™?) > ’ (2.161)

Apparently, the phase of the radiation field is shifted by a value ¢, which depends

on the state of the atom.

We note here, that the dynamics studied in the last example provides a method
of transferring coherence from an atomic superposition to a quantum correlation of
a radiation field. All we have to do, is to bring the atom into a superposition of
states |1) +2), and the field will automatically evolve toward a Schrédinger cat state
|ae*?) + |ae™¥). The transfer of quantum correlations between coupled degrees of
freedom can induce a temporal complete disappearance of any signatures of quantum
coherence in the light field. This phenomenon termed quantum collapse and revival is
genuine of the Jaynes-Cummings model and will be studied in Exc. 2.7.0.30. Another
phenomenon is vacuum Rabi splitting, which will be studied in 2.7.0.31.

2.6.3 Observables and correlations of the Jaynes-Cummings
dynamics

In the limit of low laser intensities we must consider photonic distributions that are

not necessarily coherent. The stationary solution of the Schrodinger equation consists

of the dressed states |1,n) and |2,n—1). If we now expand a general Jaynes-Cummings
state in amplitudes ¢;n(t),

) = (crall,n) + can-12,n = 1)), (2.162)

n

they will follow the Schrédinger equation,

d Cln 2 Cln
h— ’ = H, ’ . 2.163
! dt (02,n1> (Cz,n1> ( )

The evolution of the coefficients c;,, completely describes the Jaynes-Cummings dy-
namics of the system through the formula (2.146). Obviously, the Jaynes-Cummings
state is normalized because,

o0

(W) = Trpieta [9) (W] = D (levnl® + leanl®) = 1. (2.164)

n=0

As dissipation processes are neglected, we get a pure state described by,

p= 1)l . (2.165)

The Jaynes-Cummings dynamics involves two coupled degrees of freedom charac-
terized by with their respective observables. If we are interested in them, we can do
two things: (a) We ignore the degrees of freedom NOT under study by NOT DOING
a measurement. That is, we simply remove the non-interesting degrees of freedom
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from the state. For example, if our focus is on the optical mode, we ignore the atomic
state,

=Y Gl = chnln +eapmoaln—1) . (2.166)

j=1,2
Our new density operator remains pure, that is,
plas = 3" Gloliy = > Gl wli) = il - (2.167)
i,j=1,2 i,j=1,2

On the other hand, ignoring the optical mode via,

7)) = Z (nly) = ch nll) +con-1[2) . (2.168)
Again, our new density operator remains pure, that is,
Putom = Y _(mlpln) = 17) (il - (2.169)

m,n

(b) We trace over the degrees of freedom NOT under study by DOING a measurement.
For example, if again our focus is on the optical mode, we trace over the atomic states,

P = Tragom p= Y (1ol = D (10} w17 (2.170)
j=1,2 j=1,2
=S¢t el (ml + ¢ _ycan-aln — L)m — 1] # P .

It is clear, that this incomplete measurement converts the reduced density operator
into a statistical mixture, which is free of inneratomic correlations of the type c3 ,,c1 »,
but this means that we also loose possible field correlations. On the other hand,
tracing over the field mode,

o) = Trpicia p=_(nlpln) =3 (nfy)(¥ln) (2.171)
n=0 n=0

= Z (c1nll) + c2,0(2)) (01 R (1 + 6 n<2‘> # ﬁffiﬁﬁf :

After these preliminary remarks let us have a look a some interesting observables.

2.6.3.1 Temporal evolution of the Bloch vector

The expectation value for field observables A|n) = A, |n) is,

(P Alp) = TrpAZ (n|y) (| Aln)li ZA (lernl +leanl®) - (2.172)

An example for a field observable is the photon number operator 7. And for the
annihilation operator a|n) = /n|n) we have,

=Y V(e 1C1m + €5 iCam) - (2.173)
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To determine the internal state of the atom, we must trace over the light field.
The populations and coherences are, therefore,

pij = (i|Tr picra Plj) = IZ nl¥) (ln) 5) Zcﬁ nCin |- (2.174)

The projection onto the atomic state is done by,

DGl >, cimliin)
WINGl) — Xaleml (2.175)

With (2.174), we can calculate the atomic Bloch vector (2.64), whose norm is inter-
estingly NOT preserved, since,

2 Re P12
171 =l 2 9m pra ||| = 2|p12|* — 2p11p22 = —2det p (2.176)

P22 — P11
* *
=2 E C1,nC2 § C1,nC2n — 7é 1.
n n

2.6.3.2 The photon number distribution

To determine the state of the light field, we must trace over the atomic state. For
example, the probability amplitude of encountering the state |¢) in |n) is,

<n|¢> = cl,n|1> > ) (2177)

such that,

P = (0l Trasom pln) = (n S 4i19) Wlin) = [(])* = [ernl® + ezl | (2178)

=1,2

Example 8 (The Glauber-Sudarshan Q-function): To characterize the op-
tical field separately from the atomic state, we can try, by a calculation similar to
(2.172), to project the Jaynes-Cummings state onto a basis of coherent states '°
Thus, the probability amplitude of encountering the state |¢) in |«) is,

/ —la|? a*n
(aly) =€ ‘/QZﬁ(q,nu)wz,n\?»

2
el

‘<(I‘1/} Z \/7\/7 {l mCln + (2 mC2, n) )

such that,

i)

WQ(O() = <a‘TIatom p‘O{ = eila‘z (

19See previous footnote.
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We will derive this result in Exc. 2.7.0.32. This quantity, called Q-function,
allows the illustration of the state in a coordinate system spanned by Je «
and Jm « [13]. It is generally easy to calculate, but does not exhibit much
information, e.g., on interference phenomena caused by quantum correlations.
In the following section, we will calculate the Wigner function, which can also be
evaluated from the Jaynes-Cummings coefficients [54]. The Jaynes-Cummings

(a) (b) 1 :_\1_0'2 © (e)
1 =
0.5 g01 I | I
= =
& 0 2] - 0 u I I [ ]
\ < S 0 10 20
N & 0 0.2 #photons —
S o T [@ S 4
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m P19 - = ~
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Figure 2.9: (code for download) Evolution of the state during a Jaynes-Cummings type
interaction: (a) Bloch vector, (b,c) photon distribution after projection on the ground and
excited atomic state, (d) time evolution of the coherence pi2 showing the phenomenon of
collapse and revival, and (e) W (a) function.

dynamics illustrated in Fig. 2.9 demonstrates the transfer of coherence between
an atom and a light field. In Exc. 2.7.0.33 we study how to create, via a sequence
of Ramsey pulses, a Schrédinger cat state in a light field.

2.7 Exercises

2.7.0.1 Ex: Trace of an operator

The trace of an operator A is defined by Tr A = Zn<n|fl|n>
a. Show that the trace is in{iependent of the chosen basis!
b. Show that Tr AB = Tr BA!

2.7.0.2 Ex: Pure states and mixtures

Consider a system of two levels coupled by a light mode. The Hamiltonian can be

written (7 = 1),
- 0 0
H =
<Q w0>

Calculate p, p2 and (H) for the following two cases:
a. The atom is in a superposition state, [1)) = «o|1) + 5]2) e
b. The atom is a statistical mixture of eigenstates, p = u|1)(1] + v/|2)(2].


https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Figures/LightMatter/LM_Quantumfields_Opticats.m
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture2_TracoOperador.pdf
https://www.ifsc.usp.br/~strontium/Publication/Scripts/Exercises/School/Sol_PreDoc_Lecture2_MisturasPuras.pdf

58 CHAPTER 2. THE BLOCH EQUATIONS

2.7.0.3 Ex: Mixture of states

A two-level atom is initially in a superposition of two states |¢)) = %|1> + %|2>
An apparatus measures the populations of the states, but the experimenter forgot to
read the indicated result.

a. Describes the state the atom by the density operator.

b. Now the experimenter returns to the device. Calculate with which probability he

reads the state |1).

2.7.04 Ex: Thermal population of a harmonic oscillator

In thermal equilibrium the energy states of a system are populated following Boltz-
mann’s law,

efnﬁhw ) 1
S M A=

kT~
Consider a one-dimensional harmonic oscillator characterized by the secular frequency
w and, using the density operator, calculate the mean quantum number of the popu-
lation and the mean energy.

Py,

2.7.0.5 Ex: Thermal mixture

We consider a thermal non-interacting atomic gas in one dimension. Instead of de-
scribing the state of the atomic ensemble, we can consider a single atom with a
distributed probability of having a given velocity v. The density operator of the
continuous degree of freedom can be written,

~ m —mu?
P /dv \ 27ksT Py el

and the trace of an arbitrary observable A,

(A) = Tr pA = /du<umz1|u> .

Now imagine a device capable of measuring the speed of a single atom randomly
chosen within the cloud.

a. Express the probability of measuring a specific velocity v’ for this atom using the
density operator.

b. Express the expectation value of the average velocity by the density operator.

2.7.0.6 Ex: Derivation of Bloch equations

Derive the Bloch equations explicitly based on the temporal evolutions of the coeffi-
cients a5 (1.18) knowing that p;; = a;a;.

2.7.0.7 Ex: Expansion in Pauli matrices

Show explicitly Tr po— 67 = p11.
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2.7.0.8 Ex: Bloch vector and Bloch equations

Show that Eq. (2.66) is equivalent to the Bloch equations (2.51).

2.7.0.9 Ex: Normalization of the Bloch vector

Verify [|g] = 1.

2.7.0.10 Ex: Sequence of Ramsey pulses

Many atomic clocks work according to the Ramsey spectroscopy method: The two-
level atom is resonantly excited by a microwave 7/2-pulse. Then, the phase of atomic
coherence precesses freely over a period of time 7' accumulating an angle ¢. Finally,
a second m/2-pulse is applied and the population of the upper-level is measured.
Calculate this population as a function of the angle ¢. Neglect spontaneous emission.

2.7.0.11 Ex: Stationary solution of the Bloch equations

Derive the stationary solution of the Bloch equations including spontaneous emission.
How does the spectrum pao(A) change in the presence of phase noise, v = £ + 3, in
particular if 3 > g?

2.7.0.12 Ex: Photon echo

"Photon echo’ is a powerful spectroscopic technique that allows circumvention of cer-
tain dephasing processes, for example, the Doppler shift due to the atomic motion in
a thermal sample of atoms. The technique resembles the Ramsey method with the
difference, that between the two Ramsey 7/2-pulses, that is, during the free preces-
sion time, we apply an additional 7w-pulse, which inverts the imaginary part of the
coherence. We will study this method by numerical simulation of the Schrédinger
equation and the Bloch equations for a two-level system with and without sponta-
neous emission:

a. Write down the Hamiltonian of the system and do a numerical simulation of the
Schrodinger equation (concatenating the pulses as explained in Eq. (2.112)) for the
following temporal pulse sequence:

(i) resonant w/2-pulse (A2 = 0) choosing Q45 = 2,

(ii) evolution for a time T without radiation (212 = 0),

(ii) resonant 7/2-pulse using the same parameters as in (i),

(iv) evolution for a time T without radiation, and

(v) resonant 7/2-pulse identical to the first pulse.

Prepare a graph of type 2.1 illustrating the temporal evolution of the Bloch vector
during the sequence. Now, repeat the sequence taking into account a possible Doppler
shift leading to Aqs # 0.

b. Repeat the calculation of (a), now numerically solving the Bloch equations, which
allow the occurrence of spontaneous emission (I';2 = 0.03Q12). Interpret the results.
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2.7.0.13 Ex: Optical density of a cold cloud

The cross section of an atom with the resonant frequency wy moving with velocity v
and irradiated by a laser beam of frequency w is,

()_67r 2
= k2 4(w —wo — kv)2 + T2

The normalized one-dimensional Maxwell distribution,

[ m 2
dv = —mu /ZkBTd ]
p(’U) v 27T/€BT€ v

a. Calculate the absorption profile of the resonance line at 461 nm (T'46; = (27) 30.5 MHz)
of a strontium gas cooled to the Doppler limit (kgTp = Al') of this transition.

b. Calculate the absorption profile of the resonance line at 689 nm (I'ggg = (27) 7.6 kHz)
of a strontium gas cooled to the Doppler limit of the transition at 461 nm.

c. Compare the optical densities in case of resonance.

Help: To evaluate the convolution integral approximate the narrower distribution
by a J-function maintaining the integral over the distribution normalized.

2.7.0.14 Ex: Saturated absorption spectroscopy

Saturated absorption spectroscopy is a technique to avoid Doppler enlargement. The
diagram, shown in Fig. 2.10, consists of a cell filled with a rubidium gas (resonance
frequency wy = ck = 2m¢/780nm, decay rate I' = (27) 6 MHz) and two laser beams
with the same frequency w but counterpropagating, one called saturation and another
called proof. The one-dimensional and normalized Maxwell velocity distribution is,

m

7mv2/2kBTd
kgl v

p(v)dv =

The gas is at T = 300 K, where the partial pressure of rubidium is around P =
10~ mbar. The length of the cell is L = 10cm. The laser has an intensity below the
saturation limit, such that the cross section of an atom moving at velocity v is,

()_671' 2
= k2 4(w —wo — kv)2 + T2

The saturation laser has high intensity. We suppose here, 2 = 10I', where € is the
frequency of Rabi caused by the saturation beam. In this way it creates a population
Ngnd of atoms in the excited state. As this population lacks in the ground state,
Ny = N — N, the absorption of the proof beam is decreased by the factor,

N, 0?2

N 4(w—wo+kv)24+202 +T2 "

Calculate for laser proof spectrum of optical density, OD(w) = Ln ffooo MU(U)p(u)dv,

N
and the intensity of light transmitted through the cell, % =e 0D,
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rubidium cell saturation

—

probe

Figure 2.10: Scheme of saturation spectroscopy.

2.7.0.15 Ex: Rate equations as a limiting case of Bloch equations

We show in this exercise that, in the limit I' > ), we can derive, from the Bloch
equations, the Einstein rate equations. Proceed as follows:

Apply the condition p12 = 0 to the Bloch equations for a two-level system (2.75),
determine pi12(00), and replace this stationary value in the equations for the popu-
lations pgk(t) using, as an abbreviation, the transition rate R = s, where s is the
saturation parameter (2.77).

2.7.0.16 Ex: Purity of two-level atoms with spontaneous emission

Calculate for a driven two-level atom in the stationary limit Tr p and Tr p2.

2.7.0.17 Ex: Atomic beam

An atomic beam is illuminated perpendicular to its propagation direction by (quasi-
ymonochromatic, collimated laser pulses having the intensity I = 1 W/cm?, the wave-
length A = 780nm, and the duration 200ns. The laser is tuned to the center of an
atomic resonance line (T'/27 = 6 MHz).

a. How does the population of the upper atomic state develop?

b. How does the dynamics change, when the light is detuned by 100 MHz?

2.7.0.18 Ex: General form of the master equation

Show that the general form of the master equation: p = —%[I:I, pl—5(26p6t —6%6p—
poT6), reproduces the Bloch equations including spontaneous emission.

2.7.0.19 Ex: Bloch equations for three levels

An excited A-shaped atom consists of two ground states |1) and |3), which are coupled
by two lasers with Rabi frequencies and detunings 212 and Aj, respectively o3 and
A3 through an excited level |2). Derive the Bloch equations from this system from
the general master equation.

2.7.0.20 Ex: Saturation broadening and Autler-Townes splitting

In this exercise we study the Autler-Townes effect in a two-level system |1) and |2)
resonantly excited (A1 = 0) by a laser with the Rabi frequency 15:

a. From the eigenvalues E 5 of the effective Hamiltonian (1.38) of the system, describe
the behavior of the real part (energy shift) and the imaginary part (linewidth) as a
function of the Rabi frequency. Prepare diagrams 215 versus $Re E; o and versus
Jm E; 2 and discuss the limits ;9 > %Flg and Q9 < %Flg.

The Autler-Townes effect can be measured experimentally by probing the population
of level |2) via excitation of a third (higher) level by a second laser with the Rabi
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frequency €293. Thus, we obtain a three-level system in cascade configuration, as
shown in Fig. 2.3(c). In order to reproduce the experiment by numerical simulations
of the Bloch equations (2.104),

b. write down the Liouville matrix £,.q reduced by the trace condition (2.109) and
c. compute the stationary Bloch vector from equation (2.111) varying the detuning of
the probe laser Aoz and the Rabi frequency Q15 of the system under study (|1) and
|2>) ChOOSiDg the parameters F23 = 0.5F12, F13 = 0.0lrlg, QQ3 = O.1F12, prepare a
3D curve (similar to Fig. 2.2(a)) of the stationary population psa(c0). Interpret the
results.

2.7.0.21 Ex: Quantum Zeno effect and saturation broadening

In this exercise we study saturation broadening effect in a three-level system [1), |2),
and |3) in V-configuration, as shown in Fig. 2.3(b), excited by two resonant lasers
with the Rabi frequencies 215 and (o3.

a. From the eigenvalues E 5 of the effective Hamiltonian (1.38) of the system, describe
the behavior of the real part (energy shift) and the imaginary part (linewidth) as a
function of the Rabi frequency. Prepare diagrams ;o versus Me Ej o and versus
Jm E; 2 and discuss the limits ;9 > %Plg and Qo < %1"12.

Saturation broadening can be measured experimentally in a three-level system in V-
configuration. To reproduce the experiment by numerical simulations of the Bloch
equations (2.104),

b. write down the Liouville matrix £ of the system and calculate the time evolution of
the Bloch vector via equation (2.108) varying the Rabi frequency 93. Choosing the
parameters I'o3 = I'19, '3 = 0.001T2, 15 = 0.2I'12, and A1 = 0 = Asg, prepare a
3D curve (similar to Fig. 2.2(a)) of the population p33(t).

c. Interpret the results in terms of broadening by saturation. The broadening can
also be understood in terms of the quantum Zeno effect, where the transition |1)-
|2) plays the role of the ’observed system’ and the transition |2)-|3) the role of the
measuring device or ‘meter’ (for example, we can observe the light scattered on the
'meter transition’ to infer the evolution of the ’system transition’).

2.7.0.22 Ex: Light-shift

In this exercise we study the effect of the dynamic Stark shift (or light shift) of the
energy levels of a two-level system 1) and |2) excited by a laser with the Rabi fre-
quency €15 and the detuning Ajs:

a. From the eigenvalues E 5 of the effective Hamiltonian (1.38) system, find approx-
imations for weak coupling (212 < I'12) and strong coupling (€12 > I'12). Prepare a
graph showing the eigenvalue spectrum (separating the parts Re Ej 5 and Jm Ej 2) as
a function of detuning Ajs for various values of Q15. Also search for approximations
valid for large detunings Ajs > I'15, Q15 and add them to the graph.

The light shift can be experimentally measured in a three-level system in A-configuration,
as illustrated in Fig. 2.3(a). To reproduce the experiment by numerical simulations
of the Bloch equations (2.104),

b. write the Liouville matrix £,.4 reduced by the condition to the trace (2.109) and
calculate the stationary Bloch vector from equation (2.111) varying the detunings of
the two lasers Ajs and Asz. Choosing the parameters I'o3 = I'io, I'13 = 0.019,
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Oy2 = 2T5, and Qo3 = 0.2T5, prepare a 3D curve (similar to Fig. 2.2(a)) of the
stationary population pas(00). Interpret the results.

2.7.0.23 Ex: EIT & dark resonances

In this exercise we study so-called dark resonances, which are responsible for the
phenomenon of electromagnetically induced transparency (EIT). Such resonances are
observed in three-level systems |1)-|2)-|3) in A-configuration, as shown in Fig. 2.3(a),
when the laser detunings are chosen so as to satisfy Ajs = Aog.

a. From the Bloch equations (2.104) show analytically that, in a stationary situation,
the population of the excited state is pa2(00) = 0 in the center of the dark resonance.
Dark resonances can be observed experimentally. To reproduce the experiment by
numerical simulations of the Bloch equations (2.104), write down the Liouville matrix
Lcq reduced by the trace condition (2.108) and calculate the stationary Bloch vector
from equation (2.109) varying the detunings of the two lasers A1 and Agz. Choosing
the parameters such that I'o3 = I'1o, I'13 = 0.01'15, Q215 = 212, and Qs3 = 0.2,
prepare a 3D curve [similar to Fig. 2.2(a)] of the population pss(c0). Interpret the
results.

2.7.0.24 Ex: STIRAP

In experiments with cold atoms it is often necessary to transfer populations between
ground states, for example, between specific levels of a hyperfine structure. One
possible procedure is the method of optical pumping, from the initial ground state
to an excited state, which subsequently decays to the final state by spontaneous
emission. The problem with this incoherent procedure is, that one can control into
which ground state level the atom will decay, and that it heats atoms due to the
photonic recoil associated with the scattering of light. In this exercise we studied an
alternative method, called Stimulated Raman Adiabatic Passage (STIRAP), which
allows the coherent transfer of population between two states by counter-intuitive
pulse sequences:

a. Consider a three-level system in A-configuration, as shown in Fig. 2.3(a), initially
being in the state |1). Write the system’s Hamiltonian in the interaction picture.
Now, choose A1 = 0 = Aoz, and a temporal variation of the Rabi frequencies
described by Q45(t) = Flg(% + %arctanl“lzt) and Qo3(t) = Flg(% — %arctanflgt).
With this, solve the Schrodinger equation (2.112) iteratively within the time interval
t € [-40/T'12,40/I'12], while continuously adjusting the Rabi frequencies.

b. The dynamics can also be calculated via a numerical simulations of the Bloch
equations (2.104). Write down the Liouville matrix and prepare a simulation using
the same parameters as in (b) and additionally T'o3 = T'15/2, T3 = T'12/500.

c. Interpret the results.

2.7.0.25 Ex: Adiabatic sweeps

In experiments with cold atoms it is often necessary to transfer populations between
ground states, for example, between specific levels of a Zeeman structure. One possible
procedure is the method of optical pumping, from the initial ground state to an excited
state, which subsequently decays to the final state by spontaneous emission. The
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problem with this incoherent procedure is, that one can control into which ground
state level the atom will decay, and that it heats atoms due to the photonic recoil
associated with the scattering of light. In this exercise we study an alternative method,
called adiabatic sweep, which allows the coherent transfer of population between the
two outer states of a degenerate multiplet, as shown in Fig. 2.11, via an adiabatic
ramp of the frequency of the incident radiation:

a. Write down the Hamiltonian of the system in the interaction picture. Now, choose
Q/2m = 8kHz and apply a linear ramp of the radiation detuning between —50kHz <
A(t)/2m < 50kHz during a time interval of 2 ms. With this, solve the Schrodinger
equation (2.104) iteratively varying the detuning.

b. Write down the Liouville matrix of the system and do a numerical simulation
of the Bloch equations (2.104) using the same parameters as in (a). Interpret the
results. What you observe when you introduce a decay rate between adjacent levels
of I'/2m = 200 Hz?

A1)

AG)

> B

Figure 2.11: Energy levels of an atom in the ground state with Zeeman structure (for
example, |J =1,m; = —1,0,+1)) as a function of the applied magnetic field.

2.7.0.26 Ex: Dispersive interaction between an atom and light

Radiation which is tuned far from a resonance can change the phase of an atomic
dipole moment without changing the populations 2°. We study this effect in a three-
level system in cascade configuration excited by two radiation fields, as illustrated in
Fig. 2.3(c), simulating the Schrédinger equation and the Bloch equations.

a. Write down the Hamiltonian H for this system letting Ao = 0.

b. Now, consider the subsystem |2)-|3), write down its Hamiltonian Hys, determine
the eigenvalues, and assume that this transition be excited very far-off resonance.
That is, for Agg > Q93,93 expand the eigenvalues of H23 up to second order in 3.
Finally, replace the submatrix Hoys in the complete Hamiltonian H by the matrix
of the expanded eigenvalues. This procedure corresponds to treating the transition
|2)-|3) as a perturbation of the transition |1)-|2) until second order.

c. Assume that the atom is initially in the ground state and compute the time evolution
of the state via the Schrédinger equation (2.112) using (a) the perturbed Hamiltonian
and (b) the exact Hamiltonian for the following sequence of pulses:

(i) a 7/2-pulse on the transition |1)-|2),

(ii) a pulse with a variable duration between 0 and At = Q2, /47,3 applied to the

20This type of interaction is used in the implementation of quantum gates in quantum computing.
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transition |2)-|3),

(iii) a 7/2-pulse on the transition |1)-|2). What you observe?

d. Establish the Liouville matrix £ for the same system and calculate the time evolu-
tion of the Bloch vector during the sequence by the Bloch equations (2.112) choosing
the same parameters as in (c) and additionally T'o3 = 1, T'y3 = T'a3, I'1o = 0.013,
and Q12 3> A3, Ta3. Prepare a 3D curve [similar to Fig. 2.2(b)] of the population
po2(t). Interpret the results.

2.7.0.27 Ex: Photon statistics

An optical resonator contains on average 10 photons in the mode T'EMgpg,. What
is the probability of finding, at any time, 1 photon resp. 10 photons, when the light
is (a) thermal, (b) coherent? For case (a), what is the temperature of the light for
A =633nm?

2.7.0.28 Ex: Converting a pure state into a mixture by incomplete
measurement

Consider a dressed two-level atom with the atomic states |1) and |2) and the photon
number state |n).

a. Write down the general normalized dressed state and the density operator.

b. Now, perform a measurement of the atomic state tracing over the atomic degree of
freedom and verify whether the resulting density operator represents a pure state.

¢. Now, perform a measurement of the photon number and verify whether the resulting
density operator represents a pure state.

2.7.0.29 Ex: Time-evolution in the Jaynes-Cummings model

Derive the equations of motion for 67, 6., and a in the Jaynes-Cummings model.
Show that the number of photons is not a constant of motion, but the total number
of excitations.

2.7.0.30 Ex: Quantum collapse and revival in the Jaynes-Cummings
model

Consider the Jaynes-Cummings Hamiltonian and show that the quantum coherence
between the two atomic levels can disappear altogether for long periods and reappear
later. Explain how this is possible.

2.7.0.31 Ex: Vacuum Rabi splitting

Calculate the Autler-Townes splitting for an excited atom interacting with an empty
cavity, i.e. no light injected.

2.7.0.32 Ex: The @Q-function in a Jaynes-Cummings state

Calculate the Q-function for a Jaynes-Cummings state from its definition (77).
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2.7.0.33 Ex: Creation of quantum correlations in an optical mode

a. We will show in this exercise how, via coherent operations in a three-level system,
we can create Schrodinger-type quantum-type correlations in an optical mode. In the
system shown in Fig. 2.12 we imagine the lower transition excited by 7/2-pulses of a
classical resonant microwave radiation (as described by the operation (2.151)). The
upper transition is excited by quantum laser pulses tuned very far out of resonance,
thus creating a dispersive dynamics (as described by the operation (2.151)). At time
t = 0 the atom is in state |1). Now, we apply the following pulse sequence: (i) a
microwave pulse with /{2t = 7/2, (ii) an optical pulse with Q3.t/4As3 = 7,
(iii) another microwave m/2-pulse, and finally (iv) an optical pulse of light which is
resonant with the transition |2)-|3) and projects the population of the atom into one
of the states of the microwave transition. Describe the evolution of the state of the
system during the sequence and determine the final state of the optical mode.

b. Calculate the number of photons for the two cases that, after a measurement, the
atom is found in (i) the lower state and (ii) the upper state. Interprete the results.
(a) Level scheme and (b) pulse sequence.

3)
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Figure 2.12: OpticatScheme
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Chapter 3

Atomic motion in
electromagnetic fields

The third lecture is about forces exerted by electromagnetic fields on the center-
of-mass of atoms. In the case of neutral atoms these forces are always due to an
interaction of the fields with internal degrees of freedom, that is electronic charge
and current distributions. It is thus obvious that these forces wil